Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds

Svatopluk Krýsl

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 5, page 467-484
  • ISSN: 0044-8753

Abstract

top
Consider a flat symplectic manifold ( M 2 l , ω ) , l 2 , admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If λ is an eigenvalue of the symplectic Dirac operator such that - ı l λ is not a symplectic Killing number, then l - 1 l λ is an eigenvalue of the symplectic Rarita-Schwinger operator.

How to cite

top

Krýsl, Svatopluk. "Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds." Archivum Mathematicum 043.5 (2007): 467-484. <http://eudml.org/doc/250176>.

@article{Krýsl2007,
abstract = {Consider a flat symplectic manifold $(M^\{2l\},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac\{l-1\}\{l\}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.},
author = {Krýsl, Svatopluk},
journal = {Archivum Mathematicum},
keywords = {symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors; symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors},
language = {eng},
number = {5},
pages = {467-484},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds},
url = {http://eudml.org/doc/250176},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Krýsl, Svatopluk
TI - Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 467
EP - 484
AB - Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.
LA - eng
KW - symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors; symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors
UR - http://eudml.org/doc/250176
ER -

References

top
  1. Baldoni W., General represenation theory of real reductive Lie groups, In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. (1997) MR1476492
  2. Britten D. J., Hooper J., Lemire F. W., Simple C n -modules with multiplicities 1 and application, Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. (1994) MR1297597
  3. Green M. B., Hull C. M., Covariant quantum mechanics of the superstring, Phys. Lett. B, 225 (1989), 57–65. (1989) MR1006387
  4. Howe R., θ -correspondence and invariance theory, Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. (1979) MR0546602
  5. Habermann K., The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), 155–168. (1995) Zbl0842.58042MR1336211
  6. Habermann K., Habermann L., Introduction to symplectic Dirac operators, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. Zbl1102.53032MR2252919
  7. Kadlčáková L., Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University of Prague, Prague, 2001. 
  8. Kashiwara M., Schmid W., Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. (1994) MR1327544
  9. Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. (1978) MR0463359
  10. Kostant B., Symplectic Spinors, Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. (1974) Zbl0321.58015MR0400304
  11. Krýsl S., Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of 𝔰𝔭 ( 2 n , ) , J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. MR2286881
  12. Krýsl S., Symplectic spinor valued forms and operators acting between them, Arch. Math.(Brno) 42 (2006), 279–290. MR2322414
  13. Krýsl S., Classification of 1 s t order symplectic spinor operators in contact projective geometries, to appear in J. Differential Geom. Appl. MR2458281
  14. Reuter M., Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. (1999) Zbl0968.81037MR1722329
  15. Rudnick S., Symplektische Dirac-Operatoren auf symmetrischen Räumen, Diploma Thesis, University of Greifswald, Greifswald, 2005. 
  16. Schmid W., Boundary value problems for group invariant differential equations, Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. Zbl0621.22014MR0837206
  17. Severa V., Invariant differential operators on spinor-valued differential forms, Ph.D. thesis, Charles University of Prague, Prague, 1998. (1998) 
  18. Sommen F., Souček V., Monogenic differential forms, Complex Variables Theory Appl. 19 (1992), 81–90. (1992) Zbl0765.30032MR1228331
  19. Tirao J., Vogan D. A., Wolf J. A., Geometry and Representation Theory of Real and p -Adic Groups, Birkhäuser, 1997. (1997) MR1486131
  20. Vogan D., Unitary representations and complex analysis, electronically available at http://www-math.mit.edu/dav/venice.pdf. Zbl1143.22002
  21. Weil A., Sur certains groups d’opérateurs unitaires, Acta Math. 111 (1964), 143–211. (1964) MR0165033
  22. Woodhouse N. M. J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. (1997) Zbl0907.58026MR1183739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.