Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
Archivum Mathematicum (2007)
- Volume: 043, Issue: 5, page 467-484
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKrýsl, Svatopluk. "Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds." Archivum Mathematicum 043.5 (2007): 467-484. <http://eudml.org/doc/250176>.
@article{Krýsl2007,
abstract = {Consider a flat symplectic manifold $(M^\{2l\},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac\{l-1\}\{l\}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.},
author = {Krýsl, Svatopluk},
journal = {Archivum Mathematicum},
keywords = {symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors; symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors},
language = {eng},
number = {5},
pages = {467-484},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds},
url = {http://eudml.org/doc/250176},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Krýsl, Svatopluk
TI - Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 467
EP - 484
AB - Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.
LA - eng
KW - symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors; symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors
UR - http://eudml.org/doc/250176
ER -
References
top- Baldoni W., General represenation theory of real reductive Lie groups, In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. (1997) MR1476492
- Britten D. J., Hooper J., Lemire F. W., Simple -modules with multiplicities 1 and application, Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. (1994) MR1297597
- Green M. B., Hull C. M., Covariant quantum mechanics of the superstring, Phys. Lett. B, 225 (1989), 57–65. (1989) MR1006387
- Howe R., -correspondence and invariance theory, Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. (1979) MR0546602
- Habermann K., The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), 155–168. (1995) Zbl0842.58042MR1336211
- Habermann K., Habermann L., Introduction to symplectic Dirac operators, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. Zbl1102.53032MR2252919
- Kadlčáková L., Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University of Prague, Prague, 2001.
- Kashiwara M., Schmid W., Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. (1994) MR1327544
- Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. (1978) MR0463359
- Kostant B., Symplectic Spinors, Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. (1974) Zbl0321.58015MR0400304
- Krýsl S., Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of , J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. MR2286881
- Krýsl S., Symplectic spinor valued forms and operators acting between them, Arch. Math.(Brno) 42 (2006), 279–290. MR2322414
- Krýsl S., Classification of order symplectic spinor operators in contact projective geometries, to appear in J. Differential Geom. Appl. MR2458281
- Reuter M., Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. (1999) Zbl0968.81037MR1722329
- Rudnick S., Symplektische Dirac-Operatoren auf symmetrischen Räumen, Diploma Thesis, University of Greifswald, Greifswald, 2005.
- Schmid W., Boundary value problems for group invariant differential equations, Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. Zbl0621.22014MR0837206
- Severa V., Invariant differential operators on spinor-valued differential forms, Ph.D. thesis, Charles University of Prague, Prague, 1998. (1998)
- Sommen F., Souček V., Monogenic differential forms, Complex Variables Theory Appl. 19 (1992), 81–90. (1992) Zbl0765.30032MR1228331
- Tirao J., Vogan D. A., Wolf J. A., Geometry and Representation Theory of Real and -Adic Groups, Birkhäuser, 1997. (1997) MR1486131
- Vogan D., Unitary representations and complex analysis, electronically available at http://www-math.mit.edu/dav/venice.pdf. Zbl1143.22002
- Weil A., Sur certains groups d’opérateurs unitaires, Acta Math. 111 (1964), 143–211. (1964) MR0165033
- Woodhouse N. M. J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. (1997) Zbl0907.58026MR1183739
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.