A note on the congruence
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 59-65
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMeštrović, Romeo. "A note on the congruence ${np^k\atopwithdelims ()mp^k} \equiv {n\atopwithdelims ()m} \hspace{4.44443pt}(\@mod \; p^r)$." Czechoslovak Mathematical Journal 62.1 (2012): 59-65. <http://eudml.org/doc/246182>.
@article{Meštrović2012,
abstract = {In the paper we discuss the following type congruences: \[ \biggl (\{np^k\atop mp^k\}\biggr ) \equiv \left(m \atop n\right) \hspace\{10.0pt\}(\@mod \; p^r), \]
where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.},
author = {Meštrović, Romeo},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruence; prime powers; Lucas’ theorem; Wolstenholme prime; set $W(k,r)$; congruence; prime powers; Lucas' theorem; Wolstenholme prime; set },
language = {eng},
number = {1},
pages = {59-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the congruence $\{np^k\atopwithdelims ()mp^k\} \equiv \{n\atopwithdelims ()m\} \hspace\{4.44443pt\}(\@mod \; p^r)$},
url = {http://eudml.org/doc/246182},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Meštrović, Romeo
TI - A note on the congruence ${np^k\atopwithdelims ()mp^k} \equiv {n\atopwithdelims ()m} \hspace{4.44443pt}(\@mod \; p^r)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 59
EP - 65
AB - In the paper we discuss the following type congruences: \[ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left(m \atop n\right) \hspace{10.0pt}(\@mod \; p^r), \]
where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
LA - eng
KW - congruence; prime powers; Lucas’ theorem; Wolstenholme prime; set $W(k,r)$; congruence; prime powers; Lucas' theorem; Wolstenholme prime; set
UR - http://eudml.org/doc/246182
ER -
References
top- Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E., On the divisibility of the difference between two binomial coefficients, 11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952). (1952) MR0053125
- Glaisher, J. W. L., On the residues of the sums of the inverse powers of numbers in arithmetical progression, Quart. J. 32 (1900), 271-288. (1900)
- Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al. (1997) Zbl0903.11005MR1483922
- Kazandzidis, G. S., Congruences on the binomial coefficients, Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12. (1968) Zbl0179.06601MR0265271
- Lucas, E., Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. S. M. F. 6 (1878), 49-54 French. (1878) MR1503769
- McIntosh, R. J., 10.4064/aa-71-4-381-389, Acta Arith. 71 (1995), 381-389. (1995) Zbl0829.11003MR1339137DOI10.4064/aa-71-4-381-389
- McIntosh, R. J., Roettger, E. L., 10.1090/S0025-5718-07-01955-2, Math. Comput. 76 (2007), 2087-2094. (2007) Zbl1139.11003MR2336284DOI10.1090/S0025-5718-07-01955-2
- Meštrović, R., A note on the congruence , Am. Math. Mon. 116 (2009), 75-77. (2009) MR2478756
- Sun, Z.-W., Davis, D. M., 10.1090/S0002-9947-07-04236-5, Trans. Am. Math. Soc. 359 (2007), 5525-5553. (2007) Zbl1119.11016MR2327041DOI10.1090/S0002-9947-07-04236-5
- Zhao, J., 10.1016/j.jnt.2006.05.005, J. Number Theory 123 (2007), 18-26. (2007) MR2295427DOI10.1016/j.jnt.2006.05.005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.