# A note on the congruence $\left(\genfrac{}{}{0pt}{}{n{p}^{k}}{m{p}^{k}}\right)\equiv \left(\genfrac{}{}{0pt}{}{n}{m}\right)\phantom{\rule{4.44443pt}{0ex}}\left(mod\phantom{\rule{0.277778em}{0ex}}{p}^{r}\right)$

• Volume: 62, Issue: 1, page 59-65
• ISSN: 0011-4642

top

## Abstract

top
In the paper we discuss the following type congruences: $\left(\genfrac{}{}{0pt}{}{n{p}^{k}}{m{p}^{k}}\right)\equiv \left(\genfrac{}{}{0pt}{}{m}{n}\right)\phantom{\rule{10.0pt}{0ex}}\left(mod\phantom{\rule{0.277778em}{0ex}}{p}^{r}\right),$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W\left(k,r\right)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets $W\left(k,r\right)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W\left(k+i,r\right)=W\left(k-1,r\right)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W\left(k,r\right)=W\left(1,r\right)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.

## How to cite

top

Meštrović, Romeo. "A note on the congruence ${np^k\atopwithdelims ()mp^k} \equiv {n\atopwithdelims ()m} \hspace{4.44443pt}(\@mod \; p^r)$." Czechoslovak Mathematical Journal 62.1 (2012): 59-65. <http://eudml.org/doc/246182>.

@article{Meštrović2012,
abstract = {In the paper we discuss the following type congruences: $\biggl (\{np^k\atop mp^k\}\biggr ) \equiv \left(m \atop n\right) \hspace\{10.0pt\}(\@mod \; p^r),$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.},
author = {Meštrović, Romeo},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruence; prime powers; Lucas’ theorem; Wolstenholme prime; set $W(k,r)$; congruence; prime powers; Lucas' theorem; Wolstenholme prime; set },
language = {eng},
number = {1},
pages = {59-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the congruence $\{np^k\atopwithdelims ()mp^k\} \equiv \{n\atopwithdelims ()m\} \hspace\{4.44443pt\}(\@mod \; p^r)$},
url = {http://eudml.org/doc/246182},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Meštrović, Romeo
TI - A note on the congruence ${np^k\atopwithdelims ()mp^k} \equiv {n\atopwithdelims ()m} \hspace{4.44443pt}(\@mod \; p^r)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 59
EP - 65
AB - In the paper we discuss the following type congruences: $\biggl ({np^k\atop mp^k}\biggr ) \equiv \left(m \atop n\right) \hspace{10.0pt}(\@mod \; p^r),$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
LA - eng
KW - congruence; prime powers; Lucas’ theorem; Wolstenholme prime; set $W(k,r)$; congruence; prime powers; Lucas' theorem; Wolstenholme prime; set
UR - http://eudml.org/doc/246182
ER -

## References

top
1. Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E., On the divisibility of the difference between two binomial coefficients, 11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952). (1952) MR0053125
2. Glaisher, J. W. L., On the residues of the sums of the inverse powers of numbers in arithmetical progression, Quart. J. 32 (1900), 271-288. (1900)
3. Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al. (1997) Zbl0903.11005MR1483922
4. Kazandzidis, G. S., Congruences on the binomial coefficients, Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12. (1968) Zbl0179.06601MR0265271
5. Lucas, E., Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. S. M. F. 6 (1878), 49-54 French. (1878) MR1503769
6. McIntosh, R. J., On the converse of Wolstenholme's Theorem, Acta Arith. 71 (1995), 381-389. (1995) Zbl0829.11003MR1339137
7. McIntosh, R. J., Roettger, E. L., 10.1090/S0025-5718-07-01955-2, Math. Comput. 76 (2007), 2087-2094. (2007) Zbl1139.11003MR2336284DOI10.1090/S0025-5718-07-01955-2
8. Meštrović, R., A note on the congruence $\left(\genfrac{}{}{0pt}{}{nd}{md}\right)\equiv \left(\genfrac{}{}{0pt}{}{n}{m}\right)\phantom{\rule{4.44443pt}{0ex}}\left(mod\phantom{\rule{0.277778em}{0ex}}q\right)$, Am. Math. Mon. 116 (2009), 75-77. (2009) MR2478756
9. Sun, Z.-W., Davis, D. M., 10.1090/S0002-9947-07-04236-5, Trans. Am. Math. Soc. 359 (2007), 5525-5553. (2007) Zbl1119.11016MR2327041DOI10.1090/S0002-9947-07-04236-5
10. Zhao, J., 10.1016/j.jnt.2006.05.005, J. Number Theory 123 (2007), 18-26. (2007) MR2295427DOI10.1016/j.jnt.2006.05.005

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.