On the converse of Wolstenholme's Theorem

Richard J. McIntosh

Acta Arithmetica (1995)

  • Volume: 71, Issue: 4, page 381-389
  • ISSN: 0065-1036

How to cite

top

Richard J. McIntosh. "On the converse of Wolstenholme's Theorem." Acta Arithmetica 71.4 (1995): 381-389. <http://eudml.org/doc/206780>.

@article{RichardJ1995,
author = {Richard J. McIntosh},
journal = {Acta Arithmetica},
keywords = {Wolstenholme's theorem; congruences; primality testing},
language = {eng},
number = {4},
pages = {381-389},
title = {On the converse of Wolstenholme's Theorem},
url = {http://eudml.org/doc/206780},
volume = {71},
year = {1995},
}

TY - JOUR
AU - Richard J. McIntosh
TI - On the converse of Wolstenholme's Theorem
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 4
SP - 381
EP - 389
LA - eng
KW - Wolstenholme's theorem; congruences; primality testing
UR - http://eudml.org/doc/206780
ER -

References

top
  1. [1] H. W. Brinkmann, Problem E.435, Amer. Math. Monthly 48 (1941), 269-271. 
  2. [2] V. Brun, J. Stubban, J. Fjeldstad, R. Lyche, K. Aubert, W. Ljunggren and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients, in: Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, 42-54. Zbl0048.27204
  3. [3] J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), 151-153. Zbl0789.11020
  4. [4] M. D. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269. Zbl0277.02008
  5. [5] L. E. Dickson, The History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966. Zbl0139.26603
  6. [6] H. M. Edwards, Fermat's Last Theorem, Springer, New York, 1977. 
  7. [7] J. W. L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 1-35. Zbl30.0180.01
  8. [8] J. W. L. Glaisher, On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p² or p³, Quart. J. Math., 321-353. Zbl31.0185.01
  9. [9] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981. 
  10. [10] W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120. Zbl0302.10020
  11. [11] W. Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265. Zbl0308.10006
  12. [12] J. P. Jones, Private correspondence, January 1994. 
  13. [13] J. P. Jones and Yu. V. Matijasevič, Proof of recursive unsolvability of Hilbert's tenth problem, Amer. Math. Monthly 98 (1991), 689-709. Zbl0746.03006
  14. [14] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146. 
  15. [15] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360. Zbl0019.00505
  16. [16] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54. 
  17. [17] Yu. V. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (in Russian); English transl. with addendum: Soviet Math. Dokl. 11 (1970), 354-357. MR 41, #3390. 
  18. [18] Yu. V. Matijasevič, Primes are non-negative values of a polynomial in 10 variables, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR 68 (1977), 62-82 (in Russian); English transl.: J. Soviet Math. 15 (1981), 33-44. 
  19. [19] Yu. V. Matijasevič and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-553. Zbl0279.10019
  20. [20] R. J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99 (1992), 231-238. Zbl0755.11001
  21. [21] R. J. McIntosh, Congruences identifying the primes, Crux Mathematicorum 20 (1994), 33-35. 
  22. [22] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979. 
  23. [23] P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, New York, 1989. Zbl0642.10001
  24. [24] E. T. Stafford and H. S. Vandiver, Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. U.S.A. 16 (1930), 139-150. Zbl56.0887.04
  25. [25] J. W. Tanner and S. S. Wagstaff, Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), 341-350. Zbl0613.10012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.