On the converse of Wolstenholme's Theorem
Acta Arithmetica (1995)
- Volume: 71, Issue: 4, page 381-389
- ISSN: 0065-1036
Access Full Article
topHow to cite
topRichard J. McIntosh. "On the converse of Wolstenholme's Theorem." Acta Arithmetica 71.4 (1995): 381-389. <http://eudml.org/doc/206780>.
@article{RichardJ1995,
author = {Richard J. McIntosh},
journal = {Acta Arithmetica},
keywords = {Wolstenholme's theorem; congruences; primality testing},
language = {eng},
number = {4},
pages = {381-389},
title = {On the converse of Wolstenholme's Theorem},
url = {http://eudml.org/doc/206780},
volume = {71},
year = {1995},
}
TY - JOUR
AU - Richard J. McIntosh
TI - On the converse of Wolstenholme's Theorem
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 4
SP - 381
EP - 389
LA - eng
KW - Wolstenholme's theorem; congruences; primality testing
UR - http://eudml.org/doc/206780
ER -
References
top- [1] H. W. Brinkmann, Problem E.435, Amer. Math. Monthly 48 (1941), 269-271.
- [2] V. Brun, J. Stubban, J. Fjeldstad, R. Lyche, K. Aubert, W. Ljunggren and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients, in: Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, 42-54. Zbl0048.27204
- [3] J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), 151-153. Zbl0789.11020
- [4] M. D. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269. Zbl0277.02008
- [5] L. E. Dickson, The History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966. Zbl0139.26603
- [6] H. M. Edwards, Fermat's Last Theorem, Springer, New York, 1977.
- [7] J. W. L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 1-35. Zbl30.0180.01
- [8] J. W. L. Glaisher, On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p² or p³, Quart. J. Math., 321-353. Zbl31.0185.01
- [9] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.
- [10] W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120. Zbl0302.10020
- [11] W. Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265. Zbl0308.10006
- [12] J. P. Jones, Private correspondence, January 1994.
- [13] J. P. Jones and Yu. V. Matijasevič, Proof of recursive unsolvability of Hilbert's tenth problem, Amer. Math. Monthly 98 (1991), 689-709. Zbl0746.03006
- [14] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- [15] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360. Zbl0019.00505
- [16] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
- [17] Yu. V. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (in Russian); English transl. with addendum: Soviet Math. Dokl. 11 (1970), 354-357. MR 41, #3390.
- [18] Yu. V. Matijasevič, Primes are non-negative values of a polynomial in 10 variables, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR 68 (1977), 62-82 (in Russian); English transl.: J. Soviet Math. 15 (1981), 33-44.
- [19] Yu. V. Matijasevič and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-553. Zbl0279.10019
- [20] R. J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99 (1992), 231-238. Zbl0755.11001
- [21] R. J. McIntosh, Congruences identifying the primes, Crux Mathematicorum 20 (1994), 33-35.
- [22] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979.
- [23] P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, New York, 1989. Zbl0642.10001
- [24] E. T. Stafford and H. S. Vandiver, Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. U.S.A. 16 (1930), 139-150. Zbl56.0887.04
- [25] J. W. Tanner and S. S. Wagstaff, Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), 341-350. Zbl0613.10012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.