Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on m -dimensional compact intervals

Sokol B. Kaliaj; Agron D. Tato; Fatmir D. Gumeni

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 243-255
  • ISSN: 0011-4642

Abstract

top
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on m -dimensional compact intervals of m and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.

How to cite

top

Kaliaj, Sokol B., Tato, Agron D., and Gumeni, Fatmir D.. "Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals." Czechoslovak Mathematical Journal 62.1 (2012): 243-255. <http://eudml.org/doc/246260>.

@article{Kaliaj2012,
abstract = {In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb \{R\}^\{m\}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.},
author = {Kaliaj, Sokol B., Tato, Agron D., Gumeni, Fatmir D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval; Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; -dimensional compact interval},
language = {eng},
number = {1},
pages = {243-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals},
url = {http://eudml.org/doc/246260},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Kaliaj, Sokol B.
AU - Tato, Agron D.
AU - Gumeni, Fatmir D.
TI - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 243
EP - 255
AB - In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
LA - eng
KW - Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval; Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; -dimensional compact interval
UR - http://eudml.org/doc/246260
ER -

References

top
  1. Cichoń, M., 10.1023/A:1013756111769, Acta Math. Hung. 92 (2001), 75-82. (2001) Zbl1001.26003MR1924251DOI10.1023/A:1013756111769
  2. Piazza, L. Di, Musiał, K., 10.4064/sm176-2-4, Stud. Math. 176 (2006), 159-176. (2006) MR2264361DOI10.4064/sm176-2-4
  3. Piazza, L. Di, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2003-2004), 543-556. (2003) MR2083796
  4. Fremlin, D. H., 10.1007/BF01168675, Manuscr. Math. 15 (1975), 219-242. (1975) Zbl0303.28006MR0372594DOI10.1007/BF01168675
  5. Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. (1994) Zbl0807.26004MR1288751
  6. Guoju, Y., Tianqing, A., 10.1155/S0161171201002381, Int. J. Math. Sci. 25 (2001), 467-478. (2001) MR1823609DOI10.1155/S0161171201002381
  7. Guoju, Y., 10.1216/RMJ-2009-39-4-1233, Rocky Mt. J. Math. 39 (2009), 1233-1244. (2009) Zbl1214.28009MR2524711DOI10.1216/RMJ-2009-39-4-1233
  8. James, R., 10.1007/BF02759950, Isr. J. Math. 2 (1964), 101-119. (1964) Zbl0127.32502MR0176310DOI10.1007/BF02759950
  9. Kurzweil, J., Jarník, J., 10.2307/44152200, Real Anal. Exch. 17 (1992), 110-139. (1992) Zbl0754.26003DOI10.2307/44152200
  10. Musiał, K., Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. (1987) Zbl0636.28005MR0922998
  11. Musiał, K., Topics in the theory of Pettis integration, Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. (1991) Zbl0798.46042MR1248654
  12. Musiał, K., Pettis integral, Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. (2002) Zbl1043.28010MR1954622
  13. Schaefer, H. H., Topological Vector Spaces, Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. (1971) Zbl0217.16002MR0342978
  14. Schwabik, Š., Guoju, Y., Topics in Banach Space Integration, Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. (2005) MR2167754

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.