Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on -dimensional compact intervals
Sokol B. Kaliaj; Agron D. Tato; Fatmir D. Gumeni
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 243-255
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKaliaj, Sokol B., Tato, Agron D., and Gumeni, Fatmir D.. "Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals." Czechoslovak Mathematical Journal 62.1 (2012): 243-255. <http://eudml.org/doc/246260>.
@article{Kaliaj2012,
abstract = {In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb \{R\}^\{m\}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.},
author = {Kaliaj, Sokol B., Tato, Agron D., Gumeni, Fatmir D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval; Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; -dimensional compact interval},
language = {eng},
number = {1},
pages = {243-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals},
url = {http://eudml.org/doc/246260},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Kaliaj, Sokol B.
AU - Tato, Agron D.
AU - Gumeni, Fatmir D.
TI - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 243
EP - 255
AB - In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
LA - eng
KW - Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval; Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; -dimensional compact interval
UR - http://eudml.org/doc/246260
ER -
References
top- Cichoń, M., 10.1023/A:1013756111769, Acta Math. Hung. 92 (2001), 75-82. (2001) Zbl1001.26003MR1924251DOI10.1023/A:1013756111769
- Piazza, L. Di, Musiał, K., 10.4064/sm176-2-4, Stud. Math. 176 (2006), 159-176. (2006) MR2264361DOI10.4064/sm176-2-4
- Piazza, L. Di, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2003-2004), 543-556. (2003) MR2083796
- Fremlin, D. H., 10.1007/BF01168675, Manuscr. Math. 15 (1975), 219-242. (1975) Zbl0303.28006MR0372594DOI10.1007/BF01168675
- Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. (1994) Zbl0807.26004MR1288751
- Guoju, Y., Tianqing, A., 10.1155/S0161171201002381, Int. J. Math. Sci. 25 (2001), 467-478. (2001) MR1823609DOI10.1155/S0161171201002381
- Guoju, Y., 10.1216/RMJ-2009-39-4-1233, Rocky Mt. J. Math. 39 (2009), 1233-1244. (2009) Zbl1214.28009MR2524711DOI10.1216/RMJ-2009-39-4-1233
- James, R., 10.1007/BF02759950, Isr. J. Math. 2 (1964), 101-119. (1964) Zbl0127.32502MR0176310DOI10.1007/BF02759950
- Kurzweil, J., Jarník, J., 10.2307/44152200, Real Anal. Exch. 17 (1992), 110-139. (1992) Zbl0754.26003DOI10.2307/44152200
- Musiał, K., Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. (1987) Zbl0636.28005MR0922998
- Musiał, K., Topics in the theory of Pettis integration, Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. (1991) Zbl0798.46042MR1248654
- Musiał, K., Pettis integral, Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. (2002) Zbl1043.28010MR1954622
- Schaefer, H. H., Topological Vector Spaces, Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. (1971) Zbl0217.16002MR0342978
- Schwabik, Š., Guoju, Y., Topics in Banach Space Integration, Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. (2005) MR2167754
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.