Characterizations of Kurzweil-Henstock-Pettis integrable functions
Studia Mathematica (2006)
- Volume: 176, Issue: 2, page 159-176
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topL. Di Piazza, and K. Musiał. "Characterizations of Kurzweil-Henstock-Pettis integrable functions." Studia Mathematica 176.2 (2006): 159-176. <http://eudml.org/doc/284724>.
@article{L2006,
abstract = {We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.},
author = {L. Di Piazza, K. Musiał},
journal = {Studia Mathematica},
keywords = {Kurzweil-Henstock integral; Denjoy-Khinchin integral; Pettis integral; Denjoy-Pettis integral},
language = {eng},
number = {2},
pages = {159-176},
title = {Characterizations of Kurzweil-Henstock-Pettis integrable functions},
url = {http://eudml.org/doc/284724},
volume = {176},
year = {2006},
}
TY - JOUR
AU - L. Di Piazza
AU - K. Musiał
TI - Characterizations of Kurzweil-Henstock-Pettis integrable functions
JO - Studia Mathematica
PY - 2006
VL - 176
IS - 2
SP - 159
EP - 176
AB - We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
LA - eng
KW - Kurzweil-Henstock integral; Denjoy-Khinchin integral; Pettis integral; Denjoy-Pettis integral
UR - http://eudml.org/doc/284724
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.