Existence of positive periodic solutions of an SEIR model with periodic coefficients
Tailei Zhang; Junli Liu; Zhidong Teng
Applications of Mathematics (2012)
- Volume: 57, Issue: 6, page 601-616
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Tailei, Liu, Junli, and Teng, Zhidong. "Existence of positive periodic solutions of an SEIR model with periodic coefficients." Applications of Mathematics 57.6 (2012): 601-616. <http://eudml.org/doc/246263>.
@article{Zhang2012,
abstract = {An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.},
author = {Zhang, Tailei, Liu, Junli, Teng, Zhidong},
journal = {Applications of Mathematics},
keywords = {epidemic model; Fredholm mapping; coincidence degree; epidemic model; coincidence degree; Fredholm mapping},
language = {eng},
number = {6},
pages = {601-616},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive periodic solutions of an SEIR model with periodic coefficients},
url = {http://eudml.org/doc/246263},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Zhang, Tailei
AU - Liu, Junli
AU - Teng, Zhidong
TI - Existence of positive periodic solutions of an SEIR model with periodic coefficients
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 601
EP - 616
AB - An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.
LA - eng
KW - epidemic model; Fredholm mapping; coincidence degree; epidemic model; coincidence degree; Fredholm mapping
UR - http://eudml.org/doc/246263
ER -
References
top- Al-Ajam, M. R., Bizri, A. R., Mokhbat, J., Weedon, J., Lutwick, L., 10.1017/S0950268805004930, Epidemiol. Infect. 134 (2006), 341-346. (2006) DOI10.1017/S0950268805004930
- Anderson, R. M., May, R. M., 10.1038/280361a0, Nature 280 (1979), 361. (1979) DOI10.1038/280361a0
- Anderson, R. M., May, R. M., Infectious Diseases of Humans, Dynamics and Control, Oxford University Oxford (1991). (1991)
- Arenas, A. J., Gonzalez, G., Jódar, L., 10.1016/j.jmaa.2008.03.049, J. Math. Anal. Appl. 344 (2008), 969-980. (2008) Zbl1137.92318MR2426325DOI10.1016/j.jmaa.2008.03.049
- Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J., 10.1007/BF00178324, J. Math. Biol. 28 (1990), 365-382. (1990) MR1057044DOI10.1007/BF00178324
- Diekmann, O., Heesterbeek, J. A. P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons Chichester (2000). (2000) MR1882991
- Driessche, P. van den, Watmough, J., 10.1016/S0025-5564(02)00108-6, Math. Biosci. 180 (2002), 29-48. (2002) MR1950747DOI10.1016/S0025-5564(02)00108-6
- Earn, D. J. D., Dushoff, J., Levin, S. A., Ecology and evolution of the flu, Trends in Ecology and Evolution 17 (2002), 334-340. (2002)
- Fan, M., Wang, K., 10.1006/jmaa.2001.7555, J. Math. Anal. Appl. 262 (2001), 179-190. (2001) Zbl0994.34058MR1857221DOI10.1006/jmaa.2001.7555
- Gaines, R. E., Mawhin, J. L., Coincidence Degree, and Nonlinear Differential Equations, Springer Berlin (1977). (1977) Zbl0339.47031MR0637067
- Hale, J. K., Ordinary Differential Equations, Wiley-Interscience New York (1969). (1969) Zbl0186.40901MR0419901
- Herzog, G., Redheffer, R., Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal., Real World Appl. 5 (2004), 33-44. (2004) Zbl1067.92053MR2004085
- Hethcote, H. W., 10.1137/S0036144500371907, SIAM Review 42 (2000), 599-653. (2000) Zbl0993.92033MR1814049DOI10.1137/S0036144500371907
- Jódar, L., Villanueva, R. J., Arenas, A., 10.1016/j.mcm.2007.08.017, Math. Comput. Modelling 48 (2008), 548-557. (2008) Zbl1145.92336MR2431484DOI10.1016/j.mcm.2007.08.017
- Li, Y., Kuang, Y., 10.1006/jmaa.2000.7248, J. Math. Anal. Appl. 255 (2001), 260-280. (2001) Zbl1024.34062MR1813821DOI10.1006/jmaa.2000.7248
- Li, M. Y., Muldowney, J. S., 10.1016/0025-5564(95)92756-5, Math. Biosci. 125 (1995), 155-164. (1995) Zbl0821.92022MR1315259DOI10.1016/0025-5564(95)92756-5
- London, W., Yorke, J. A., 10.1093/oxfordjournals.aje.a121575, Am. J. Epidemiol. 98 (1973), 453-468. (1973) DOI10.1093/oxfordjournals.aje.a121575
- Ma, J., Ma, Z., 10.3934/mbe.2006.3.161, Math. Biosci. Eng. 3 (2006), 161-172. (2006) Zbl1089.92048MR2192132DOI10.3934/mbe.2006.3.161
- Nuño, M., Feng, Z., Martcheva, M., Carlos, C. C., 10.1137/S003613990343882X, SIAM J. Appl. Math. 65 (2005), 964-982. (2005) MR2136038DOI10.1137/S003613990343882X
- Teng, Z., 10.1016/S0096-3003(00)00171-5, Appl. Math. Comput. 127 (2002), 235-247. (2002) Zbl1035.34078MR1883850DOI10.1016/S0096-3003(00)00171-5
- Teng, Z., Chen, L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay, Nonlinear Anal., Real World Appl. 4 (2003), 335-364. (2003) Zbl1018.92033MR1942689
- Weber, A., Weber, M., Milligan, P., 10.1016/S0025-5564(01)00066-9, Math. Biosci. 172 (2001), 95-113. (2001) Zbl0988.92025MR1853471DOI10.1016/S0025-5564(01)00066-9
- Zhang, X., Chen, L., 10.1016/S0898-1221(99)00206-0, Comput. Math. Appl. 38 (1999), 61-71. (1999) Zbl0939.92031MR1703408DOI10.1016/S0898-1221(99)00206-0
- Zhang, T., Liu, J., Teng, Z., Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure, Nonlinear Anal., Real World Appl. 11 (2010), 293-306. (2010) Zbl1195.34130MR2570549
- Zhang, J., Ma, Z., 10.1016/S0025-5564(03)00087-7, Math. Biosci. 185 (2003), 15-32. (2003) Zbl1021.92040MR2003259DOI10.1016/S0025-5564(03)00087-7
- Zhang, T., Teng, Z., 10.1007/s11538-007-9231-z, Bull. Math. Biol. 69 (2007), 2537-2559. (2007) Zbl1245.34040MR2353845DOI10.1007/s11538-007-9231-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.