Existence of positive periodic solutions of an SEIR model with periodic coefficients

Tailei Zhang; Junli Liu; Zhidong Teng

Applications of Mathematics (2012)

  • Volume: 57, Issue: 6, page 601-616
  • ISSN: 0862-7940

Abstract

top
An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.

How to cite

top

Zhang, Tailei, Liu, Junli, and Teng, Zhidong. "Existence of positive periodic solutions of an SEIR model with periodic coefficients." Applications of Mathematics 57.6 (2012): 601-616. <http://eudml.org/doc/246263>.

@article{Zhang2012,
abstract = {An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.},
author = {Zhang, Tailei, Liu, Junli, Teng, Zhidong},
journal = {Applications of Mathematics},
keywords = {epidemic model; Fredholm mapping; coincidence degree; epidemic model; coincidence degree; Fredholm mapping},
language = {eng},
number = {6},
pages = {601-616},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive periodic solutions of an SEIR model with periodic coefficients},
url = {http://eudml.org/doc/246263},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Zhang, Tailei
AU - Liu, Junli
AU - Teng, Zhidong
TI - Existence of positive periodic solutions of an SEIR model with periodic coefficients
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 601
EP - 616
AB - An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.
LA - eng
KW - epidemic model; Fredholm mapping; coincidence degree; epidemic model; coincidence degree; Fredholm mapping
UR - http://eudml.org/doc/246263
ER -

References

top
  1. Al-Ajam, M. R., Bizri, A. R., Mokhbat, J., Weedon, J., Lutwick, L., 10.1017/S0950268805004930, Epidemiol. Infect. 134 (2006), 341-346. (2006) DOI10.1017/S0950268805004930
  2. Anderson, R. M., May, R. M., 10.1038/280361a0, Nature 280 (1979), 361. (1979) DOI10.1038/280361a0
  3. Anderson, R. M., May, R. M., Infectious Diseases of Humans, Dynamics and Control, Oxford University Oxford (1991). (1991) 
  4. Arenas, A. J., Gonzalez, G., Jódar, L., 10.1016/j.jmaa.2008.03.049, J. Math. Anal. Appl. 344 (2008), 969-980. (2008) Zbl1137.92318MR2426325DOI10.1016/j.jmaa.2008.03.049
  5. Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J., 10.1007/BF00178324, J. Math. Biol. 28 (1990), 365-382. (1990) MR1057044DOI10.1007/BF00178324
  6. Diekmann, O., Heesterbeek, J. A. P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons Chichester (2000). (2000) MR1882991
  7. Driessche, P. van den, Watmough, J., 10.1016/S0025-5564(02)00108-6, Math. Biosci. 180 (2002), 29-48. (2002) MR1950747DOI10.1016/S0025-5564(02)00108-6
  8. Earn, D. J. D., Dushoff, J., Levin, S. A., Ecology and evolution of the flu, Trends in Ecology and Evolution 17 (2002), 334-340. (2002) 
  9. Fan, M., Wang, K., 10.1006/jmaa.2001.7555, J. Math. Anal. Appl. 262 (2001), 179-190. (2001) Zbl0994.34058MR1857221DOI10.1006/jmaa.2001.7555
  10. Gaines, R. E., Mawhin, J. L., Coincidence Degree, and Nonlinear Differential Equations, Springer Berlin (1977). (1977) Zbl0339.47031MR0637067
  11. Hale, J. K., Ordinary Differential Equations, Wiley-Interscience New York (1969). (1969) Zbl0186.40901MR0419901
  12. Herzog, G., Redheffer, R., Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal., Real World Appl. 5 (2004), 33-44. (2004) Zbl1067.92053MR2004085
  13. Hethcote, H. W., 10.1137/S0036144500371907, SIAM Review 42 (2000), 599-653. (2000) Zbl0993.92033MR1814049DOI10.1137/S0036144500371907
  14. Jódar, L., Villanueva, R. J., Arenas, A., 10.1016/j.mcm.2007.08.017, Math. Comput. Modelling 48 (2008), 548-557. (2008) Zbl1145.92336MR2431484DOI10.1016/j.mcm.2007.08.017
  15. Li, Y., Kuang, Y., 10.1006/jmaa.2000.7248, J. Math. Anal. Appl. 255 (2001), 260-280. (2001) Zbl1024.34062MR1813821DOI10.1006/jmaa.2000.7248
  16. Li, M. Y., Muldowney, J. S., 10.1016/0025-5564(95)92756-5, Math. Biosci. 125 (1995), 155-164. (1995) Zbl0821.92022MR1315259DOI10.1016/0025-5564(95)92756-5
  17. London, W., Yorke, J. A., 10.1093/oxfordjournals.aje.a121575, Am. J. Epidemiol. 98 (1973), 453-468. (1973) DOI10.1093/oxfordjournals.aje.a121575
  18. Ma, J., Ma, Z., 10.3934/mbe.2006.3.161, Math. Biosci. Eng. 3 (2006), 161-172. (2006) Zbl1089.92048MR2192132DOI10.3934/mbe.2006.3.161
  19. Nuño, M., Feng, Z., Martcheva, M., Carlos, C. C., 10.1137/S003613990343882X, SIAM J. Appl. Math. 65 (2005), 964-982. (2005) MR2136038DOI10.1137/S003613990343882X
  20. Teng, Z., 10.1016/S0096-3003(00)00171-5, Appl. Math. Comput. 127 (2002), 235-247. (2002) Zbl1035.34078MR1883850DOI10.1016/S0096-3003(00)00171-5
  21. Teng, Z., Chen, L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay, Nonlinear Anal., Real World Appl. 4 (2003), 335-364. (2003) Zbl1018.92033MR1942689
  22. Weber, A., Weber, M., Milligan, P., 10.1016/S0025-5564(01)00066-9, Math. Biosci. 172 (2001), 95-113. (2001) Zbl0988.92025MR1853471DOI10.1016/S0025-5564(01)00066-9
  23. Zhang, X., Chen, L., 10.1016/S0898-1221(99)00206-0, Comput. Math. Appl. 38 (1999), 61-71. (1999) Zbl0939.92031MR1703408DOI10.1016/S0898-1221(99)00206-0
  24. Zhang, T., Liu, J., Teng, Z., Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure, Nonlinear Anal., Real World Appl. 11 (2010), 293-306. (2010) Zbl1195.34130MR2570549
  25. Zhang, J., Ma, Z., 10.1016/S0025-5564(03)00087-7, Math. Biosci. 185 (2003), 15-32. (2003) Zbl1021.92040MR2003259DOI10.1016/S0025-5564(03)00087-7
  26. Zhang, T., Teng, Z., 10.1007/s11538-007-9231-z, Bull. Math. Biol. 69 (2007), 2537-2559. (2007) Zbl1245.34040MR2353845DOI10.1007/s11538-007-9231-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.