Hyperplane section 𝕆 0 2 of the complex Cayley plane as the homogeneous space F 4 / P 4

Karel Pazourek; Vít Tuček; Peter Franek

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 4, page 535-549
  • ISSN: 0010-2628

Abstract

top
We prove that the exceptional complex Lie group F 4 has a transitive action on the hyperplane section of the complex Cayley plane 𝕆 2 . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of Spin ( 9 , ) F 4 . Moreover, we identify the stabilizer of the F 4 -action as a parabolic subgroup P 4 (with Levi factor B 3 T 1 ) of the complex Lie group F 4 . In the real case we obtain an analogous realization of F 4 ( - 20 ) / .

How to cite

top

Pazourek, Karel, Tuček, Vít, and Franek, Peter. "Hyperplane section ${\mathbb {O}\mathbb {P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm {F_4/P_4}$." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 535-549. <http://eudml.org/doc/246265>.

@article{Pazourek2011,
abstract = {We prove that the exceptional complex Lie group $\{\mathrm \{F\}_4\}$ has a transitive action on the hyperplane section of the complex Cayley plane $\{\mathbb \{O\}\mathbb \{P\}\}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of $\{\mathrm \{Spin\}\}(9,\mathbb \{C\})\le \{\mathrm \{F\}_4\}$. Moreover, we identify the stabilizer of the $\{\mathrm \{F\}_4\}$-action as a parabolic subgroup $\{\mathrm \{P\}_4\}$ (with Levi factor $\mathrm \{B_3T_1\}$) of the complex Lie group $\{\mathrm \{F\}_4\}$. In the real case we obtain an analogous realization of $\{\mathrm \{F\}_4\}^\{(-20)\}/\mathbb \{P\}$.},
author = {Pazourek, Karel, Tuček, Vít, Franek, Peter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry; Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi variety; hyperplane section; exceptional geometry},
language = {eng},
number = {4},
pages = {535-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperplane section $\{\mathbb \{O\}\mathbb \{P\}\}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm \{F_4/P_4\}$},
url = {http://eudml.org/doc/246265},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Pazourek, Karel
AU - Tuček, Vít
AU - Franek, Peter
TI - Hyperplane section ${\mathbb {O}\mathbb {P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm {F_4/P_4}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 535
EP - 549
AB - We prove that the exceptional complex Lie group ${\mathrm {F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb {O}\mathbb {P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm {Spin}}(9,\mathbb {C})\le {\mathrm {F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm {F}_4}$-action as a parabolic subgroup ${\mathrm {P}_4}$ (with Levi factor $\mathrm {B_3T_1}$) of the complex Lie group ${\mathrm {F}_4}$. In the real case we obtain an analogous realization of ${\mathrm {F}_4}^{(-20)}/\mathbb {P}$.
LA - eng
KW - Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry; Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi variety; hyperplane section; exceptional geometry
UR - http://eudml.org/doc/246265
ER -

References

top
  1. Armstrong S., Biquard O., Einstein metrics with anisotropic boundary behaviour, arXiv:0901.1051v1 [math.DG]. MR2646355
  2. Atiyah M., Berndt J., Projective Planes, Severi Varieties and Spheres, Surveys in Differential Geometry, International Press of Boston Inc., 2003. Zbl1057.53040MR2039984
  3. Baez J.C., 10.1090/S0273-0979-01-00934-X, Bull. Amer. Math. Soc. 39 (2001), no. 2, 145–205. Zbl1026.17001MR1886087DOI10.1090/S0273-0979-01-00934-X
  4. Biquard O., Asymptotically Symmetric Einstein Metrics, SMF/AMS Texts and Monographs, American Mathematical Society, Providence, 2006. Zbl1112.53001MR2260400
  5. Bourbaki N., Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics, Springer, Berlin, 2002. Zbl1145.17001MR1890629
  6. Čap A., Slovák J., Parabolic Geometries: Background and General Theory, Mathematical Surveys and Monographs, AMS Bookstore, 2009. MR2532439
  7. Dray T., Manogue C.A., Octonionic Cayley spinors and E 6 , Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR2682473
  8. Friedrich T., Weak Spin ( 9 ) -structures on 16 -dimensional Riemannian manifolds, Asian J. Math. 5 (2001), 129–160; arXiv:math/9912112v1 [math.DG]. Zbl1021.53028MR1868168
  9. Goodman R., Wallach N.R., Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998. Zbl1173.22001MR1606831
  10. Harvey F.R., Spinors and Calibration, Academic Press, San Diego, 1990. MR1045637
  11. Held R., Stavrov I., VanKoten B., 10.1016/j.difgeo.2009.01.007, Differential Geom. Appl. 27 (2009), 464–481. Zbl1175.53064MR2547826DOI10.1016/j.difgeo.2009.01.007
  12. Humphreys J.E., Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer, 1975. Zbl0471.20029MR0396773
  13. Jacobson N., Structure and Representations of Jordan Algebras, AMS Bookstore, 2008. Zbl0218.17010
  14. Jordan P., von Neumann J., Wigner E., 10.2307/1968117, Ann. of Math. (2) 35 (1934), no. 1, 29–64. Zbl0008.42103MR1503141DOI10.2307/1968117
  15. Krýsl S., 10.1016/j.difgeo.2007.11.037, Differential Geom. Appl. 26 (2008), 553–565. MR2458281DOI10.1016/j.difgeo.2007.11.037
  16. Krýsl S., Classification of 𝔭 -homomorphisms between higher symplectic spinors, Rend. Circ. Mat. Palermo (2), Suppl. no. 79 (2006), 117–127. MR2287131
  17. Krýsl S., BGG diagrams for contact graded odd dimensional orthogonal geometries, Acta Univ. Carolin. Math. Phys. 45 (2004), no. 1, 67–77. MR2109695
  18. Landsberg J.M., Manivel L., On the projective geometry of rational homogenous varieties, Comment. Math. Helv. 78 (2003), no. 1, 65–100. MR1966752
  19. Landsberg J.M., Manivel L., 10.1006/jabr.2000.8697, J. Algebra 239 (2001), 477–512. Zbl1064.14053MR1832903DOI10.1006/jabr.2000.8697
  20. van Leeuwen M.A.A., Cohen A.M., Lisser B., LiE, A Package for Lie Group Computations, Computer Algebra Nederland, Amsterdam, 1992, available at http://www-math.univ-poitiers.fr/maavl/LiE/. 
  21. Moufang R., 10.1007/BF02940648, Abhandl. Math. Univ. Hamburg 9 (1933), 207–222. Zbl0007.07205DOI10.1007/BF02940648
  22. Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl1087.17001MR1763974
  23. Yokota I., Exceptional Lie groups, arXiv.org:0902.0431 [math.DG], 2009. Zbl1145.22002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.