Hyperplane section of the complex Cayley plane as the homogeneous space
Karel Pazourek; Vít Tuček; Peter Franek
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 535-549
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPazourek, Karel, Tuček, Vít, and Franek, Peter. "Hyperplane section ${\mathbb {O}\mathbb {P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm {F_4/P_4}$." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 535-549. <http://eudml.org/doc/246265>.
@article{Pazourek2011,
abstract = {We prove that the exceptional complex Lie group $\{\mathrm \{F\}_4\}$ has a transitive action on the hyperplane section of the complex Cayley plane $\{\mathbb \{O\}\mathbb \{P\}\}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of $\{\mathrm \{Spin\}\}(9,\mathbb \{C\})\le \{\mathrm \{F\}_4\}$. Moreover, we identify the stabilizer of the $\{\mathrm \{F\}_4\}$-action as a parabolic subgroup $\{\mathrm \{P\}_4\}$ (with Levi factor $\mathrm \{B_3T_1\}$) of the complex Lie group $\{\mathrm \{F\}_4\}$. In the real case we obtain an analogous realization of $\{\mathrm \{F\}_4\}^\{(-20)\}/\mathbb \{P\}$.},
author = {Pazourek, Karel, Tuček, Vít, Franek, Peter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry; Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi variety; hyperplane section; exceptional geometry},
language = {eng},
number = {4},
pages = {535-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperplane section $\{\mathbb \{O\}\mathbb \{P\}\}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm \{F_4/P_4\}$},
url = {http://eudml.org/doc/246265},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Pazourek, Karel
AU - Tuček, Vít
AU - Franek, Peter
TI - Hyperplane section ${\mathbb {O}\mathbb {P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm {F_4/P_4}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 535
EP - 549
AB - We prove that the exceptional complex Lie group ${\mathrm {F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb {O}\mathbb {P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm {Spin}}(9,\mathbb {C})\le {\mathrm {F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm {F}_4}$-action as a parabolic subgroup ${\mathrm {P}_4}$ (with Levi factor $\mathrm {B_3T_1}$) of the complex Lie group ${\mathrm {F}_4}$. In the real case we obtain an analogous realization of ${\mathrm {F}_4}^{(-20)}/\mathbb {P}$.
LA - eng
KW - Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry; Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi variety; hyperplane section; exceptional geometry
UR - http://eudml.org/doc/246265
ER -
References
top- Armstrong S., Biquard O., Einstein metrics with anisotropic boundary behaviour, arXiv:0901.1051v1 [math.DG]. MR2646355
- Atiyah M., Berndt J., Projective Planes, Severi Varieties and Spheres, Surveys in Differential Geometry, International Press of Boston Inc., 2003. Zbl1057.53040MR2039984
- Baez J.C., 10.1090/S0273-0979-01-00934-X, Bull. Amer. Math. Soc. 39 (2001), no. 2, 145–205. Zbl1026.17001MR1886087DOI10.1090/S0273-0979-01-00934-X
- Biquard O., Asymptotically Symmetric Einstein Metrics, SMF/AMS Texts and Monographs, American Mathematical Society, Providence, 2006. Zbl1112.53001MR2260400
- Bourbaki N., Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics, Springer, Berlin, 2002. Zbl1145.17001MR1890629
- Čap A., Slovák J., Parabolic Geometries: Background and General Theory, Mathematical Surveys and Monographs, AMS Bookstore, 2009. MR2532439
- Dray T., Manogue C.A., Octonionic Cayley spinors and , Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR2682473
- Friedrich T., Weak Spin-structures on -dimensional Riemannian manifolds, Asian J. Math. 5 (2001), 129–160; arXiv:math/9912112v1 [math.DG]. Zbl1021.53028MR1868168
- Goodman R., Wallach N.R., Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998. Zbl1173.22001MR1606831
- Harvey F.R., Spinors and Calibration, Academic Press, San Diego, 1990. MR1045637
- Held R., Stavrov I., VanKoten B., 10.1016/j.difgeo.2009.01.007, Differential Geom. Appl. 27 (2009), 464–481. Zbl1175.53064MR2547826DOI10.1016/j.difgeo.2009.01.007
- Humphreys J.E., Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer, 1975. Zbl0471.20029MR0396773
- Jacobson N., Structure and Representations of Jordan Algebras, AMS Bookstore, 2008. Zbl0218.17010
- Jordan P., von Neumann J., Wigner E., 10.2307/1968117, Ann. of Math. (2) 35 (1934), no. 1, 29–64. Zbl0008.42103MR1503141DOI10.2307/1968117
- Krýsl S., 10.1016/j.difgeo.2007.11.037, Differential Geom. Appl. 26 (2008), 553–565. MR2458281DOI10.1016/j.difgeo.2007.11.037
- Krýsl S., Classification of -homomorphisms between higher symplectic spinors, Rend. Circ. Mat. Palermo (2), Suppl. no. 79 (2006), 117–127. MR2287131
- Krýsl S., BGG diagrams for contact graded odd dimensional orthogonal geometries, Acta Univ. Carolin. Math. Phys. 45 (2004), no. 1, 67–77. MR2109695
- Landsberg J.M., Manivel L., On the projective geometry of rational homogenous varieties, Comment. Math. Helv. 78 (2003), no. 1, 65–100. MR1966752
- Landsberg J.M., Manivel L., 10.1006/jabr.2000.8697, J. Algebra 239 (2001), 477–512. Zbl1064.14053MR1832903DOI10.1006/jabr.2000.8697
- van Leeuwen M.A.A., Cohen A.M., Lisser B., LiE, A Package for Lie Group Computations, Computer Algebra Nederland, Amsterdam, 1992, available at http://www-math.univ-poitiers.fr/maavl/LiE/.
- Moufang R., 10.1007/BF02940648, Abhandl. Math. Univ. Hamburg 9 (1933), 207–222. Zbl0007.07205DOI10.1007/BF02940648
- Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl1087.17001MR1763974
- Yokota I., Exceptional Lie groups, arXiv.org:0902.0431 [math.DG], 2009. Zbl1145.22002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.