Octonionic Cayley spinors and
Tevian Dray; Corinne A. Manogue
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 193-207
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDray, Tevian, and Manogue, Corinne A.. "Octonionic Cayley spinors and $E_6$." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 193-207. <http://eudml.org/doc/37752>.
@article{Dray2010,
abstract = {Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested.},
author = {Dray, Tevian, Manogue, Corinne A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {octonions; $E_6$; exceptional Lie groups; Dirac equation; octonions; ; exceptional Lie group; Dirac equation},
language = {eng},
number = {2},
pages = {193-207},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Octonionic Cayley spinors and $E_6$},
url = {http://eudml.org/doc/37752},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Dray, Tevian
AU - Manogue, Corinne A.
TI - Octonionic Cayley spinors and $E_6$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 193
EP - 207
AB - Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested.
LA - eng
KW - octonions; $E_6$; exceptional Lie groups; Dirac equation; octonions; ; exceptional Lie group; Dirac equation
UR - http://eudml.org/doc/37752
ER -
References
top- Baez J. C., 10.1090/S0273-0979-01-00934-X, Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl1026.17001MR1886087DOI10.1090/S0273-0979-01-00934-X
- Cartan É., Le principe de dualité et la théorie des groupes simple et semi-simples, Bull. Sci. Math. 49 (1925), 361–374.
- Conway J.H., Smith D.A., On Quaternions and Octonions, A.K. Peters, Natick, MA, 2003. Zbl1098.17001MR1957212
- Dray T., Manogue C.A., 10.1023/A:1026699830361, Internat. J. Theoret. Phys. 38 (1999), 2901–2916; . Zbl0951.15008MR1764984DOI10.1023/A:1026699830361
- Dray T., Manogue C.A., Quaternionic spin, in Clifford Algebras and their Applications in Mathematical Physics, (R. Abłamowicz and B. Fauser, eds.), Birkhäuser, Boston, 2000, pp. 29–46; . Zbl1160.81396MR1783522
- Fairlie D.B., Corrigan E., Private communication, 1986.
- Freudenthal H., 10.1016/0001-8708(65)90038-1, Adv. Math. 1 (1964), 145–190. Zbl0125.10003MR0170974DOI10.1016/0001-8708(65)90038-1
- Harvey F.R., Spinors and Calibrations, Academic Press, Boston, 1990. Zbl0694.53002MR1045637
- Jacobson N., Some Groups of Transformations defined by Jordan Algebras, II, J. Reine Angew. Math. 204 (1960), 74–98. Zbl0142.26401MR0159849
- Manogue C.A., Dray T., 10.1142/S0217732399000134, Mod. Phys. Lett. A14 (1999), 99–103; . MR1674805DOI10.1142/S0217732399000134
- Manogue C.A., Dray T., Octonionic Möbius transformations, Int. J. Mod. Phys. A14 (1999), 1243–1255; . MR1703958
- Manogue C.A., Dray T., Octonions, , and particle physics, in Proceedings of QUANTUM (York, 2008), J. Phys.: Conference Series (JPCS)(to appear).
- Manogue C.A., Schray J., 10.1063/1.530056, J. Math. Phys. 34 (1993), 3746–3767; . Zbl0797.53075MR1230549DOI10.1063/1.530056
- Paige L.J., Jordan algebras, in Studies in Modern Algebra (A.A. Albert, ed.), Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 144–186. Zbl0196.30803
- Ramond P., Introduction to exceptional Lie groups and algebras, Caltech preprint CALT-68-577, 1976.
- Schafer R.D., An Introduction to Nonassociative Algebras, Academic Press, New York, 1966 (reprinted by Dover Publications, 1995). Zbl0145.25601MR0210757
- Schray J., Octonions and supersymmetry, PhD thesis, Oregon State University, 1994.
- Schray J., 10.1088/0264-9381/13/1/004, Class. Quant. Grav. 13 (1996), 27–38; . Zbl0999.81500MR1371012DOI10.1088/0264-9381/13/1/004
- Sudbery A., Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A17 (1984), 939–955. Zbl0544.22010MR0743176
- Wangberg A., The structure of , PhD thesis, Oregon State University, 2007, . MR2711269
- Wangberg A., Dray T., Visualizing Lie subalgebras using root and weight diagrams, Loci 2, February 2009; .
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.