On the Cauchy problem for linear hyperbolic functional-differential equations

Alexander Lomtatidze; Jiří Šremr

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 391-440
  • ISSN: 0011-4642

Abstract

top
We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.

How to cite

top

Lomtatidze, Alexander, and Šremr, Jiří. "On the Cauchy problem for linear hyperbolic functional-differential equations." Czechoslovak Mathematical Journal 62.2 (2012): 391-440. <http://eudml.org/doc/246271>.

@article{Lomtatidze2012,
abstract = {We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.},
author = {Lomtatidze, Alexander, Šremr, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions; functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness},
language = {eng},
number = {2},
pages = {391-440},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Cauchy problem for linear hyperbolic functional-differential equations},
url = {http://eudml.org/doc/246271},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Lomtatidze, Alexander
AU - Šremr, Jiří
TI - On the Cauchy problem for linear hyperbolic functional-differential equations
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 391
EP - 440
AB - We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.
LA - eng
KW - functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions; functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness
UR - http://eudml.org/doc/246271
ER -

References

top
  1. Bielawski, D., 10.1006/jmaa.2000.7118, J. Math. Anal. Appl. 253 (2001), 334-340. (2001) Zbl0966.35080MR1804580DOI10.1006/jmaa.2000.7118
  2. Carathéodory, C., Vorlesungen über Reelle Funktionen, Leipzig und Berlin: B. G. Teubner (1918), German. (1918) 
  3. Deimling, K., 10.1007/BF02414955, Ann. Mat. Pura Appl., IV. Ser. 89 (1971), 381-391. (1971) MR0330809DOI10.1007/BF02414955
  4. Deimling, K., 10.1007/BF01112700, Math. Z. 114 (1970), 303-312 German. (1970) MR0262643DOI10.1007/BF01112700
  5. Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, New York and London: Interscience Publishers. XIV (1958). (1958) Zbl0084.10402MR0117523
  6. Grigolia, M., On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type, Mem. Differ. Equ. Math. Phys. 16 (1999), 154-158. (1999) Zbl0940.35201MR1691354
  7. Grigolia, M. P., On a generalized characteristic boundary value problem for hyperbolic systems, Differ. Uravn. 21 (1985), 678-686. (1985) 
  8. Kharibegashvili, S., Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems, Mem. Differ. Equ. Math. Phys. 4 (1995), 127 p. (1995) Zbl0870.35001MR1415805
  9. Kiguradze, T., Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differ. Equ. Math. Phys. 1 (1994), 144 p. (1994) Zbl0819.35003MR1296228
  10. Kiguradze, T. I., On periodic boundary value problems for linear hyperbolic equations. I, Differ. Equations 29 (1993), 231-245, translation from Differ. Uravn. 29 281-297 (1993). (1993) MR1236111
  11. Kiguradze, T. I., Periodic boundary value problems for hyperbolic equations. II, Differ. Equations 29 (1993), 542-549, translation from Differ. Uravn. 29 637-645 (1993). (1993) Zbl0849.35067MR1250721
  12. Lakshmikantham, V., Pandit, S. G., 10.1016/0022-247X(85)90062-9, J. Math. Anal. Appl. 105 (1985), 466-477. (1985) Zbl0569.35056MR0778480DOI10.1016/0022-247X(85)90062-9
  13. Mitropol'skij, Yu. A., Urmancheva, L. B., On two-point problem for systems of hyperbolic equations, Ukr. Math. J. 42 (1990), 1492-1498, translation from Ukr. Mat. Zh. 42 1657-1663 (1990). (1990) MR1098465
  14. Natanson, I. P., Theory of Functions of Real Variable, Nauka, Moscow (1974), Russian. (1974) MR0354979
  15. Schaefer, H. H., Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II, Isr. J. Math. 13 (1972), 400-415. (1972) MR0333754
  16. Šremr, J., Absolutely continuous functions of two variables in the sense of Carathéodory, Electron J. Differ. Equ. 2010 (2010) 11 p. Zbl1200.26016MR2740595
  17. Tolstov, G. P., On the mixed second derivative, Mat. Sb., N. Ser. 24 (1949), 27-51 Russian. (1949) MR0029971
  18. Tricomi, F. G., Lezioni Sulle Equazioni a Derivate Parziali. Corso di Analisi Superiore, Editrice Gheroni, Torino (1954), Italian. (1954) Zbl0057.07502MR0067293
  19. Vejvoda, O., Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I, Czech. Math. J. 14 (1964), 341-382. (1964) MR0174872
  20. al., O. Vejvoda et, Partial Differential Equations, SNTL, Praha (1981). (1981) 
  21. Walczak, S., Absolutely continuous functions of several variables and their application to differential equations, Bull. Pol. Acad. Sci., Math. 35 (1987), 733-744. (1987) Zbl0691.35029MR0961712
  22. Walter, W., Differential and Integral Inequalities. Translated by Lisa Rosenblatt and Lawrence Shampine, Ergebnisse der Mathematik und ihrer Grenzgebiege. Band 55. Berlin-Heidelberg-New York: Springer-Verlag (1970). (1970) Zbl0252.35005MR0271508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.