On the Cauchy problem for linear hyperbolic functional-differential equations
Alexander Lomtatidze; Jiří Šremr
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 391-440
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLomtatidze, Alexander, and Šremr, Jiří. "On the Cauchy problem for linear hyperbolic functional-differential equations." Czechoslovak Mathematical Journal 62.2 (2012): 391-440. <http://eudml.org/doc/246271>.
@article{Lomtatidze2012,
abstract = {We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.},
author = {Lomtatidze, Alexander, Šremr, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions; functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness},
language = {eng},
number = {2},
pages = {391-440},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Cauchy problem for linear hyperbolic functional-differential equations},
url = {http://eudml.org/doc/246271},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Lomtatidze, Alexander
AU - Šremr, Jiří
TI - On the Cauchy problem for linear hyperbolic functional-differential equations
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 391
EP - 440
AB - We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.
LA - eng
KW - functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions; functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness
UR - http://eudml.org/doc/246271
ER -
References
top- Bielawski, D., 10.1006/jmaa.2000.7118, J. Math. Anal. Appl. 253 (2001), 334-340. (2001) Zbl0966.35080MR1804580DOI10.1006/jmaa.2000.7118
- Carathéodory, C., Vorlesungen über Reelle Funktionen, Leipzig und Berlin: B. G. Teubner (1918), German. (1918)
- Deimling, K., 10.1007/BF02414955, Ann. Mat. Pura Appl., IV. Ser. 89 (1971), 381-391. (1971) MR0330809DOI10.1007/BF02414955
- Deimling, K., 10.1007/BF01112700, Math. Z. 114 (1970), 303-312 German. (1970) MR0262643DOI10.1007/BF01112700
- Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, New York and London: Interscience Publishers. XIV (1958). (1958) Zbl0084.10402MR0117523
- Grigolia, M., On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type, Mem. Differ. Equ. Math. Phys. 16 (1999), 154-158. (1999) Zbl0940.35201MR1691354
- Grigolia, M. P., On a generalized characteristic boundary value problem for hyperbolic systems, Differ. Uravn. 21 (1985), 678-686. (1985)
- Kharibegashvili, S., Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems, Mem. Differ. Equ. Math. Phys. 4 (1995), 127 p. (1995) Zbl0870.35001MR1415805
- Kiguradze, T., Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differ. Equ. Math. Phys. 1 (1994), 144 p. (1994) Zbl0819.35003MR1296228
- Kiguradze, T. I., On periodic boundary value problems for linear hyperbolic equations. I, Differ. Equations 29 (1993), 231-245, translation from Differ. Uravn. 29 281-297 (1993). (1993) MR1236111
- Kiguradze, T. I., Periodic boundary value problems for hyperbolic equations. II, Differ. Equations 29 (1993), 542-549, translation from Differ. Uravn. 29 637-645 (1993). (1993) Zbl0849.35067MR1250721
- Lakshmikantham, V., Pandit, S. G., 10.1016/0022-247X(85)90062-9, J. Math. Anal. Appl. 105 (1985), 466-477. (1985) Zbl0569.35056MR0778480DOI10.1016/0022-247X(85)90062-9
- Mitropol'skij, Yu. A., Urmancheva, L. B., On two-point problem for systems of hyperbolic equations, Ukr. Math. J. 42 (1990), 1492-1498, translation from Ukr. Mat. Zh. 42 1657-1663 (1990). (1990) MR1098465
- Natanson, I. P., Theory of Functions of Real Variable, Nauka, Moscow (1974), Russian. (1974) MR0354979
- Schaefer, H. H., Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II, Isr. J. Math. 13 (1972), 400-415. (1972) MR0333754
- Šremr, J., Absolutely continuous functions of two variables in the sense of Carathéodory, Electron J. Differ. Equ. 2010 (2010) 11 p. Zbl1200.26016MR2740595
- Tolstov, G. P., On the mixed second derivative, Mat. Sb., N. Ser. 24 (1949), 27-51 Russian. (1949) MR0029971
- Tricomi, F. G., Lezioni Sulle Equazioni a Derivate Parziali. Corso di Analisi Superiore, Editrice Gheroni, Torino (1954), Italian. (1954) Zbl0057.07502MR0067293
- Vejvoda, O., Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I, Czech. Math. J. 14 (1964), 341-382. (1964) MR0174872
- al., O. Vejvoda et, Partial Differential Equations, SNTL, Praha (1981). (1981)
- Walczak, S., Absolutely continuous functions of several variables and their application to differential equations, Bull. Pol. Acad. Sci., Math. 35 (1987), 733-744. (1987) Zbl0691.35029MR0961712
- Walter, W., Differential and Integral Inequalities. Translated by Lisa Rosenblatt and Lawrence Shampine, Ergebnisse der Mathematik und ihrer Grenzgebiege. Band 55. Berlin-Heidelberg-New York: Springer-Verlag (1970). (1970) Zbl0252.35005MR0271508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.