Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)
- Volume: 51, Issue: 2, page 41-51
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topCīrulis, Jānis. "Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 41-51. <http://eudml.org/doc/246296>.
@article{Cīrulis2012,
abstract = {Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets.},
author = {Cīrulis, Jānis},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; filter; Hilbert algebra; implicative semilattice; subtraction; adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; Hilbert algebra; implicative semilattice; subtraction; finitely generated filters; lattice of ideals; lattice of filters},
language = {eng},
number = {2},
pages = {41-51},
publisher = {Palacký University Olomouc},
title = {Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra},
url = {http://eudml.org/doc/246296},
volume = {51},
year = {2012},
}
TY - JOUR
AU - Cīrulis, Jānis
TI - Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 41
EP - 51
AB - Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets.
LA - eng
KW - adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; filter; Hilbert algebra; implicative semilattice; subtraction; adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; Hilbert algebra; implicative semilattice; subtraction; finitely generated filters; lattice of ideals; lattice of filters
UR - http://eudml.org/doc/246296
ER -
References
top- Cīrulis, J., Multipliers in implicative algebras, Bull. Sect. Log. (Łódź) 15 (1986), 152–158. (1986) Zbl0634.03067MR0907610
- Cīrulis, J., Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra, In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34. (2005) Zbl1082.03056MR2166943
- Cīrulis, J., 10.2478/s11533-007-0008-2, Centr. Eur. J. Math. 5 (2007), 264–279. (2007) Zbl1125.03047MR2300273DOI10.2478/s11533-007-0008-2
- Curry, H. B., Foundations of Mathematical logic, McGraw-Hill, New York, 1963. (1963) Zbl0163.24209MR0148529
- Diego, A., Sur les algèbres de Hilbert, Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966. (1966) Zbl0144.00105MR0199086
- Henkin, L., An algebraic characterization of quantifiers, Fund. Math. 37 (1950), 63–74. (1950) Zbl0041.34804MR0040234
- Horn, A., 10.2307/2964545, Journ. Symb. Logic 27 (1962), 391–399. (1962) MR0171706DOI10.2307/2964545
- Huang, W., Liu, F., 10.1007/BF03325431, Semigroup Forum 58 (1999), 317–322. (1999) Zbl0928.06012MR1678492DOI10.1007/BF03325431
- Huang, W., Wang, D., Adjoint semigroups of BCI-algebras, Southeast Asian Bull. Math. 19 (1995), 95–98. (1995) Zbl0859.06016MR1366413
- Iseki, K., Tanaka, S., An introduction in the theory of BCK-algebras, Math. Japon. 23 (1978), 1–26. (1978) MR0500283
- Karp, C. R., Set representation theorems in implicative models, Amer. Math. Monthly 61 (1954), 523–523 (abstract). (1954)
- Karp, C. R., Languages with expressions of infinite length, Univ. South. California, 1964 (Ph.D. thesis). (1964) Zbl0127.00901MR0176910
- Kondo, M., 10.1155/S0161171201010985, Int. J. Math. 28 (2001), 535–543. (2001) Zbl1007.06014MR1895299DOI10.1155/S0161171201010985
- Marsden, E. L., 10.1007/BF00650494, J. Philos. Log. 1 (1972), 195–200. (1972) MR0476504DOI10.1007/BF00650494
- Schmidt, J., Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications, In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428. (1977) MR0472657
- Tsinakis, C., Brouwerian semilattices determined by their endomorphism semigroups, . Houston J. Math. 5 (1979), 427–436. (1979) Zbl0431.06003MR0559982
- Tsirulis, Ya. P., Notes on closure endomorphisms of implicative semilattices, Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian). (1986) MR0878277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.