Hilbert algebras as implicative partial semilattices

Jānis Cīrulis

Open Mathematics (2007)

  • Volume: 5, Issue: 2, page 264-279
  • ISSN: 2391-5455

Abstract

top
The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative subalgebra of an implicative semilattice),and conversely.The implication in an implicative partial semilattice is characterised in terms of ?lters of the underlying partial semilattice.

How to cite

top

Jānis Cīrulis. "Hilbert algebras as implicative partial semilattices." Open Mathematics 5.2 (2007): 264-279. <http://eudml.org/doc/269445>.

@article{JānisCīrulis2007,
abstract = {The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative subalgebra of an implicative semilattice),and conversely.The implication in an implicative partial semilattice is characterised in terms of ?lters of the underlying partial semilattice.},
author = {Jānis Cīrulis},
journal = {Open Mathematics},
keywords = {Compatible elements; filter; Hilbert algebra; implication; implicative semilattice; meet; partial semilattice; compatible elements; compatible meet operation},
language = {eng},
number = {2},
pages = {264-279},
title = {Hilbert algebras as implicative partial semilattices},
url = {http://eudml.org/doc/269445},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Jānis Cīrulis
TI - Hilbert algebras as implicative partial semilattices
JO - Open Mathematics
PY - 2007
VL - 5
IS - 2
SP - 264
EP - 279
AB - The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative subalgebra of an implicative semilattice),and conversely.The implication in an implicative partial semilattice is characterised in terms of ?lters of the underlying partial semilattice.
LA - eng
KW - Compatible elements; filter; Hilbert algebra; implication; implicative semilattice; meet; partial semilattice; compatible elements; compatible meet operation
UR - http://eudml.org/doc/269445
ER -

References

top
  1. [1] J.C. Abbott: “Semi-boolean algebra”, Matem. Vestnik N. Ser., Vol. 4(19), (1967), pp. 177–198. Zbl0153.02704
  2. [2] J.C. Abbott: “Implication algebra”, Bull. Math. Soc. Sci. Math. R. S. Roumanie, Vol. 11, (1967), pp. 3–23. 
  3. [3] J. Berman and W.J. Block: “Free Lukasiewicz and hoop residuation algebras”, Studia Logica, Vol. 68, (2001), pp. 1–28. 
  4. [4] D. Busneag: “A note on deductive systems of a Hilbert algebra”, Kobe J. Math., Vol. 2, (1985), pp. 29–35. Zbl0584.06005
  5. [5] D. Busneag: “Hertz algebras of fractions and maximal Hertz algebras of quotients”, Math.Japon., Vol. 39, (1993), pp. 461–469. Zbl0810.06011
  6. [6] I. Chajda: “The lattice of deductive systems on Hilbert algebras”, Southeast Asian Bull. Math., Vol. 26, (2002), pp. 21–26. http://dx.doi.org/10.1007/s100120200022 
  7. [7] I. Chajda and R. Halaš: “Order algebras”, Demonstr.Math., Vol. 35, (2002), pp. 1–10. Zbl1051.06005
  8. [8] I. Chajda and Z. Seidl: “An algebraich approach to partial lattices”, Demonstr. Math., Vol. 30, (1997), pp. 485–494. Zbl0910.06006
  9. [9] J. Cīrulis: “Subtractive nearsemilattices”, Proc. Latvian Acad. Sci., Vol. 52B, (1998), pp. 228–233. Zbl1027.06007
  10. [10] J. Cīrulis: “(H)-Hilbert algebras are not same as Hertz algebras”, Bull. Sect. Log. (Lódź), Vol. 32, (2003), pp. 107–108. Zbl1114.03311
  11. [11] J. Cīrulis: “Hilbert algebras as implicative partial semilattices”, Abstracts of AAA-67, Potsdam,(2004), http://at.yorku.ca/cgi-bin/amca/canj-36. 
  12. [12] J. Cīrulis: “Multipliers,closure endomorphisms and quasi-decompositions of a Hilbert algebra”, Contrib. Gen. Algebra, Vol. 16, (2005), pp. 25–34. Zbl1082.03056
  13. [13] H.B. Curry: Foundations of Mathematical Logic, McGraw-Hill, New York e.a., 1963. Zbl0163.24209
  14. [14] A. Diego: Sobre Algebras de Hilbert, Notas de Logica Mat., Vol. 12, Inst. Mat. Univ. Nac. del Sur, Bahia Blanca, 1965. 
  15. [15] A. Diego: Les Algébres de Hilbert, Collect. de Logique Math., Sér A, Vol., 21, Gauthier-Willar, Paris, 1966. 
  16. [16] A.V. Figallo, G. Ramón and S. Saad: “A note on Hilbert algebras with infimum”, Mat.Contemp., Vol. 24, (2003), pp. 23–37. Zbl1082.03057
  17. [17] A. Figallo, Jr. and A. Ziliani: “Remarks on Hertz algebras and implicative semilattices”, Bull. Sect. Logic (Lódź), Vol. 24, 2005, pp. 37–42. Zbl1114.03312
  18. [18] G. Grätzer: General Lattice Theory, Akademie-Verlag, Berlin, 1978. Zbl0436.06001
  19. [19] R. Halaš: “Pseudocomplemented ordered sets”, Arch.Math.(Brno), Vol. 29, (1993), pp. 153–160. Zbl0801.06007
  20. [20] R. Halaš: “Remarks on commutative Hilbert algebras”, Math.Bohemica, Vol. 127, (2002), pp. 525–529. Zbl1008.03039
  21. [21] L. Henkin: “An algebraic characterization of quantifiers”, Fund. Math., Vol. 37, (1950), pp. 63–74. Zbl0041.34804
  22. [22] S.M. Hong and Y.B. Jun: “On a special class of Hilbert algebras”, Algebra Colloq., Vol. 3, (1996), pp. 285–288. Zbl0857.03040
  23. [23] A. Horn: “The separation theorem of intuitionistic propositional calculus”, J. Symb. Logic, Vol. 27, (1962), pp. 391–399. http://dx.doi.org/10.2307/2964545 
  24. [24] K. Iseki and S. Tanaka: “An introduction in the theory of BCK-algebras”, Math. Japon., Vol. 23, (1978), pp. 1–26. Zbl0385.03051
  25. [25] Y.B. Jun: “Deductive systems of Hilbert algebras”, Math. Japon., Vol. 42, (1996), pp. 51–54. Zbl0844.03033
  26. [26] Y.B. Jun: “Commutative Hilbert algebras”, Soochow J. Math., Vol. 22, (1996), pp. 477–484. Zbl0864.03042
  27. [27] T. Katriňák: “Pseudokomplementäre Halbverbande”, Mat. Časopis, Vol. 18, (1968), pp. 121–143. Zbl0164.00701
  28. [28] M. Kondo: “Hilbert algebras are dual isomorphic to positive implicative BCK-algebras”, Math. Japon., Vol. 49, (1999), pp. 265–268. Zbl0930.06017
  29. [29] M. Kondo: “(H)-Hilbert algebras are same as Hertz algebras”, Math. Japon., Vol. 50, (1999), pp. 195–200. Zbl0937.03073
  30. [30] E.L. Marsden: “Compatible elements in implicative models”, J. Philos. Logic, Vol. 1, (1972), pp. 156–161. http://dx.doi.org/10.1007/BF00650494 Zbl0259.02046
  31. [31] E.L. Marsden: “A note on implicative models”, Notre Dame J. Formal Log., Vol. 14, (1973), pp. 139–144. http://dx.doi.org/10.1305/ndjfl/1093890823 Zbl0214.00804
  32. [32] A. Monteiro: “Axiomes independants pour les algèbres de Brouwer”, Rev. Un. Mat. Argentina, Vol. 17, (1955), pp. 149–160. Zbl0072.25004
  33. [33] Y.S. Pawar: “Implicative posets”, Bull. Calcutta Math. Soc., Vol. 85, (1993), pp. 381–384. Zbl0813.06001
  34. [34] W.C. Nemitz: “On the lattice of filters of an implicative semi-lattice”, J. Math. Mech., Vol. 18, (1969), pp. 683–688. Zbl0169.02101
  35. [35] H. Rasiowa: An Algebraic Approach to Non-classical Logics, PWN, North-Holland, Warszawa, 1974. 
  36. [36] S. Rudeanu: “On relatively pseudocomplemented posets and Hilbert algebras”, An. Stiint. Univ. Iaşi, N. Ser., Ia, Suppl., Vol. 31, (1985), pp. 74–77. 
  37. [37] A. Torrens: “On the role of the polynomial (X → Y ) → Y in some implicative algebras”, Zeitschr. Log. Grundl. Math., Vol. 34, (1988), pp. 117–122. Zbl0621.03043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.