On the H p - L q boundedness of some fractional integral operators

Pablo Rocha; Marta Urciuolo

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 625-635
  • ISSN: 0011-4642

Abstract

top
Let A 1 , , A m be n × n real matrices such that for each 1 i m , A i is invertible and A i - A j is invertible for i j . In this paper we study integral operators of the form T f ( x ) = k 1 ( x - A 1 y ) k 2 ( x - A 2 y ) k m ( x - A m y ) f ( y ) d y , k i ( y ) = j 2 j n / q i ϕ i , j ( 2 j y ) , 1 q i < , 1 / q 1 + 1 / q 2 + + 1 / q m = 1 - r , 0 r < 1 , and ϕ i , j satisfying suitable regularity conditions. We obtain the boundedness of T : H p ( n ) L q ( n ) for 0 < p < 1 / r and 1 / q = 1 / p - r . We also show that we can not expect the H p - H q boundedness of this kind of operators.

How to cite

top

Rocha, Pablo, and Urciuolo, Marta. "On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators." Czechoslovak Mathematical Journal 62.3 (2012): 625-635. <http://eudml.org/doc/246304>.

@article{Rocha2012,
abstract = {Let $A_\{1\},\dots ,A_\{m\}$ be $n\times n$ real matrices such that for each $1\le i\le m,$$A_\{i\}$ is invertible and $A_\{i\}-A_\{j\}$ is invertible for $i\ne j$. In this paper we study integral operators of the form \[ Tf( x) =\int k\_\{1\}( x-A\_\{1\}y) k\_\{2\}( x-A\_\{2\}y) \dots k\_\{m\}( x-A\_\{m\}y) f( y) \{\rm d\} y, \]$k_\{i\}( y) =\sum _\{j\in \mathbb \{Z\}\}2^\{jn/\{q_\{i\}\}\}\varphi _\{i,j\}( 2^\{j\}y) $, $1\le q_\{i\}<\infty ,$$1/\{q_\{1\}\}+1/\{q_\{2\}\}+\dots +1/\{q_\{m\}\}=1-r,$$0\le r<1,$ and $\varphi _\{i,j\}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^\{p\}( \mathbb \{R\} ^\{n\}) \rightarrow L^\{q\}( \mathbb \{R\}^\{n\}) $ for $ 0<p<1/\{r\}$ and $1/\{q\}=1/\{p\}-r.$ We also show that we can not expect the $H^\{p\}$-$H^\{q\}$ boundedness of this kind of operators.},
author = {Rocha, Pablo, Urciuolo, Marta},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral operator; Hardy space; integral operator; Hardy space},
language = {eng},
number = {3},
pages = {625-635},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $H^\{p\}$-$L^\{q\}$ boundedness of some fractional integral operators},
url = {http://eudml.org/doc/246304},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Rocha, Pablo
AU - Urciuolo, Marta
TI - On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 625
EP - 635
AB - Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\le i\le m,$$A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\ne j$. In this paper we study integral operators of the form \[ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y) {\rm d} y, \]$k_{i}( y) =\sum _{j\in \mathbb {Z}}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\le q_{i}<\infty ,$$1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$$0\le r<1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0<p<1/{r}$ and $1/{q}=1/{p}-r.$ We also show that we can not expect the $H^{p}$-$H^{q}$ boundedness of this kind of operators.
LA - eng
KW - integral operator; Hardy space; integral operator; Hardy space
UR - http://eudml.org/doc/246304
ER -

References

top
  1. Ding, Y., Lu, S., 10.1017/S0027763000025411, Nagoya Math. J. 167 (2002), 17-33. (2002) Zbl1031.42015MR1924717DOI10.1017/S0027763000025411
  2. Gelfand, I. M., Shilov, G. E., Generalized Functions, Properties and Operations, Vol. 1, Academic Press Inc. (1964). (1964) MR0166596
  3. Godoy, T., Urciuolo, M., 10.1023/A:1026437621978, Acta Math. Hung. 82 (1999), 99-105. (1999) Zbl0937.47032MR1658586DOI10.1023/A:1026437621978
  4. Ricci, F., Sjogren, P., 10.1007/BF01161645, Math. Z. 199 (1988), 565-575. (1988) MR0968322DOI10.1007/BF01161645
  5. Rocha, P., Urciuolo, M., 10.1515/GMJ.2011.0043, Georgian Math. J. 18 (2011), 801-808. (2011) Zbl1230.42030MR2897664DOI10.1515/GMJ.2011.0043
  6. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton N. J. (1970). (1970) Zbl0207.13501MR0290095
  7. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton N. J. (1993). (1993) Zbl0821.42001MR1232192
  8. Stein, E. M., Weiss, G., 10.1007/BF02546524, Acta Math. 103 (1960), 25-62. (1960) MR0121579DOI10.1007/BF02546524
  9. Taibleson, M. H., Weiss, G., The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-151. (1980) Zbl0472.46041MR0604370

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.