Weighted inequalities for some integral operators with rough kernels
Open Mathematics (2014)
- Volume: 12, Issue: 4, page 636-647
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaría Riveros, and Marta Urciuolo. "Weighted inequalities for some integral operators with rough kernels." Open Mathematics 12.4 (2014): 636-647. <http://eudml.org/doc/269403>.
@article{MaríaRiveros2014,
abstract = {In this paper we study integral operators with kernels \[K(x,y) = k\_1 (x - A\_1 y) \cdots k\_m \left( \{x - A\_m y\} \right),\]\[k\_i \left( x \right) = \{\{\Omega \_i \left( x \right)\} \mathord \{\left\bad. \{\vphantom\{\{\Omega \_i \left( x \right)\} \{\left| x \right|\}\}\} \right. \hspace\{0.0pt\}\} \{\left| x \right|\}\}^\{\{n \mathord \{\left\bad. \{\vphantom\{n \{q\_i \}\}\} \right. \hspace\{0.0pt\}\} \{q\_i \}\}\}\]
where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.},
author = {María Riveros, Marta Urciuolo},
journal = {Open Mathematics},
keywords = {Fractional operators; Calderón-Zygmund operators; BMO; Muckenhoupt weights; fractional operator; Calderón-Zygmund operator; Muckenhoupt weight},
language = {eng},
number = {4},
pages = {636-647},
title = {Weighted inequalities for some integral operators with rough kernels},
url = {http://eudml.org/doc/269403},
volume = {12},
year = {2014},
}
TY - JOUR
AU - María Riveros
AU - Marta Urciuolo
TI - Weighted inequalities for some integral operators with rough kernels
JO - Open Mathematics
PY - 2014
VL - 12
IS - 4
SP - 636
EP - 647
AB - In this paper we study integral operators with kernels \[K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),\]\[k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord {\left\bad. {\vphantom{{\Omega _i \left( x \right)} {\left| x \right|}}} \right. \hspace{0.0pt}} {\left| x \right|}}^{{n \mathord {\left\bad. {\vphantom{n {q_i }}} \right. \hspace{0.0pt}} {q_i }}}\]
where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
LA - eng
KW - Fractional operators; Calderón-Zygmund operators; BMO; Muckenhoupt weights; fractional operator; Calderón-Zygmund operator; Muckenhoupt weight
UR - http://eudml.org/doc/269403
ER -
References
top- [1] Bernardis A.L., Lorente M., Riveros M.S., Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions, Math. Inequal. Appl., 2011, 14(4), 881–895 Zbl1245.42009
- [2] Ding Y., Lu S., Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math., 1998, 50(1), 29–39 http://dx.doi.org/10.4153/CJM-1998-003-1 Zbl0905.42010
- [3] Duoandikoetxea J., Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., 1993, 336(2), 869–880 http://dx.doi.org/10.1090/S0002-9947-1993-1089418-5 Zbl0770.42011
- [4] Duoandikoetxea J., Fourier Analysis, Grad. Stud. Math., 29, American Mathematical Society, Providence, 2001 Zbl0969.42001
- [5] García-Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., 104, North-Holland, Amsterdam, 1985
- [6] Godoy T., Urciuolo M., On certain integral operators of fractional type, Acta Math. Hungar., 1999, 82(1–2), 99–105 http://dx.doi.org/10.1023/A:1026437621978 Zbl0937.47032
- [7] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 Zbl1220.42001
- [8] Kurtz D.S., Wheeden R.L., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 1979, 255, 343–362 http://dx.doi.org/10.1090/S0002-9947-1979-0542885-8 Zbl0427.42004
- [9] Muckenhoupt B., Wheeden R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 1974, 192, 261–274 http://dx.doi.org/10.1090/S0002-9947-1974-0340523-6 Zbl0289.26010
- [10] Riveros M.S., Urciuolo M., Weighted inequalities for integral operators with some homogeneous kernels, Czechoslovak Math. J., 2005, 55(130)(2), 423–432 http://dx.doi.org/10.1007/s10587-005-0032-y Zbl1081.42018
- [11] Riveros M.S., Urciuolo M., Weighted inequalities for fractional type operators with some homogeneous kernels, Acta Math. Sin. (Engl. Ser.), 2013, 29(3), 449–460 http://dx.doi.org/10.1007/s10114-013-1639-9 Zbl1260.42011
- [12] Rocha P., Urciuolo M., On the H p-L q boundedness of some fractional integral operators, Czechoslovak Math. J., 2012, 62(137)(3), 625–635 http://dx.doi.org/10.1007/s10587-012-0054-1 Zbl1265.42046
- [13] Watson D.K., Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J., 1990, 60(2), 389–399 http://dx.doi.org/10.1215/S0012-7094-90-06015-6 Zbl0711.42025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.