Weighted inequalities for some integral operators with rough kernels

María Riveros; Marta Urciuolo

Open Mathematics (2014)

  • Volume: 12, Issue: 4, page 636-647
  • ISSN: 2391-5455

Abstract

top
In this paper we study integral operators with kernels K ( x , y ) = k 1 ( x - A 1 y ) k m x - A m y , k i x = Ω i x Ω i x x x n n q i q i where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.

How to cite

top

María Riveros, and Marta Urciuolo. "Weighted inequalities for some integral operators with rough kernels." Open Mathematics 12.4 (2014): 636-647. <http://eudml.org/doc/269403>.

@article{MaríaRiveros2014,
abstract = {In this paper we study integral operators with kernels \[K(x,y) = k\_1 (x - A\_1 y) \cdots k\_m \left( \{x - A\_m y\} \right),\]\[k\_i \left( x \right) = \{\{\Omega \_i \left( x \right)\} \mathord \{\left\bad. \{\vphantom\{\{\Omega \_i \left( x \right)\} \{\left| x \right|\}\}\} \right. \hspace\{0.0pt\}\} \{\left| x \right|\}\}^\{\{n \mathord \{\left\bad. \{\vphantom\{n \{q\_i \}\}\} \right. \hspace\{0.0pt\}\} \{q\_i \}\}\}\] where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.},
author = {María Riveros, Marta Urciuolo},
journal = {Open Mathematics},
keywords = {Fractional operators; Calderón-Zygmund operators; BMO; Muckenhoupt weights; fractional operator; Calderón-Zygmund operator; Muckenhoupt weight},
language = {eng},
number = {4},
pages = {636-647},
title = {Weighted inequalities for some integral operators with rough kernels},
url = {http://eudml.org/doc/269403},
volume = {12},
year = {2014},
}

TY - JOUR
AU - María Riveros
AU - Marta Urciuolo
TI - Weighted inequalities for some integral operators with rough kernels
JO - Open Mathematics
PY - 2014
VL - 12
IS - 4
SP - 636
EP - 647
AB - In this paper we study integral operators with kernels \[K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),\]\[k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord {\left\bad. {\vphantom{{\Omega _i \left( x \right)} {\left| x \right|}}} \right. \hspace{0.0pt}} {\left| x \right|}}^{{n \mathord {\left\bad. {\vphantom{n {q_i }}} \right. \hspace{0.0pt}} {q_i }}}\] where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
LA - eng
KW - Fractional operators; Calderón-Zygmund operators; BMO; Muckenhoupt weights; fractional operator; Calderón-Zygmund operator; Muckenhoupt weight
UR - http://eudml.org/doc/269403
ER -

References

top
  1. [1] Bernardis A.L., Lorente M., Riveros M.S., Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions, Math. Inequal. Appl., 2011, 14(4), 881–895 Zbl1245.42009
  2. [2] Ding Y., Lu S., Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math., 1998, 50(1), 29–39 http://dx.doi.org/10.4153/CJM-1998-003-1 Zbl0905.42010
  3. [3] Duoandikoetxea J., Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., 1993, 336(2), 869–880 http://dx.doi.org/10.1090/S0002-9947-1993-1089418-5 Zbl0770.42011
  4. [4] Duoandikoetxea J., Fourier Analysis, Grad. Stud. Math., 29, American Mathematical Society, Providence, 2001 Zbl0969.42001
  5. [5] García-Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., 104, North-Holland, Amsterdam, 1985 
  6. [6] Godoy T., Urciuolo M., On certain integral operators of fractional type, Acta Math. Hungar., 1999, 82(1–2), 99–105 http://dx.doi.org/10.1023/A:1026437621978 Zbl0937.47032
  7. [7] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 Zbl1220.42001
  8. [8] Kurtz D.S., Wheeden R.L., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 1979, 255, 343–362 http://dx.doi.org/10.1090/S0002-9947-1979-0542885-8 Zbl0427.42004
  9. [9] Muckenhoupt B., Wheeden R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 1974, 192, 261–274 http://dx.doi.org/10.1090/S0002-9947-1974-0340523-6 Zbl0289.26010
  10. [10] Riveros M.S., Urciuolo M., Weighted inequalities for integral operators with some homogeneous kernels, Czechoslovak Math. J., 2005, 55(130)(2), 423–432 http://dx.doi.org/10.1007/s10587-005-0032-y Zbl1081.42018
  11. [11] Riveros M.S., Urciuolo M., Weighted inequalities for fractional type operators with some homogeneous kernels, Acta Math. Sin. (Engl. Ser.), 2013, 29(3), 449–460 http://dx.doi.org/10.1007/s10114-013-1639-9 Zbl1260.42011
  12. [12] Rocha P., Urciuolo M., On the H p-L q boundedness of some fractional integral operators, Czechoslovak Math. J., 2012, 62(137)(3), 625–635 http://dx.doi.org/10.1007/s10587-012-0054-1 Zbl1265.42046
  13. [13] Watson D.K., Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J., 1990, 60(2), 389–399 http://dx.doi.org/10.1215/S0012-7094-90-06015-6 Zbl0711.42025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.