Fractal construction of an atomic Archimedean effect algebra with non-atomic subalgebra of sharp elements

Vladimír Olejček

Kybernetika (2012)

  • Volume: 48, Issue: 2, page 294-298
  • ISSN: 0023-5954

Abstract

top
Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.

How to cite

top

Olejček, Vladimír. "Fractal construction of an atomic Archimedean effect algebra with non-atomic subalgebra of sharp elements." Kybernetika 48.2 (2012): 294-298. <http://eudml.org/doc/246312>.

@article{Olejček2012,
abstract = {Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.},
author = {Olejček, Vladimír},
journal = {Kybernetika},
keywords = {atomic Archimedean lattice effect algebra; sharp element; Archimedean effect algebra; lattice effect algebra; MV-algebra; sharp element},
language = {eng},
number = {2},
pages = {294-298},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fractal construction of an atomic Archimedean effect algebra with non-atomic subalgebra of sharp elements},
url = {http://eudml.org/doc/246312},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Olejček, Vladimír
TI - Fractal construction of an atomic Archimedean effect algebra with non-atomic subalgebra of sharp elements
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 294
EP - 298
AB - Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.
LA - eng
KW - atomic Archimedean lattice effect algebra; sharp element; Archimedean effect algebra; lattice effect algebra; MV-algebra; sharp element
UR - http://eudml.org/doc/246312
ER -

References

top
  1. A. Dvurečenskij, S. Pulmannová, New trends in Quantum Structures Theory., Kluwer Academic Publications, Dordrecht / Ister Science, Bratislava 2000. MR1861369
  2. D. J. Foulis, M. K. Bennett, 10.1007/BF02283036, Found. Phys. 24 (1994), 1331-1352. Zbl1213.06004MR1304942DOI10.1007/BF02283036
  3. G. Jenča, Z. Riečanová, On sharp elements in lattice ordered effect algebras., BUSEFAL 80 (1999), 24-29. 
  4. F. Kôpka, F. Chovanec, D-posets., Math. Slovaca 44 (1994), 21-34. Zbl1200.03046MR1290269
  5. V. Olejček, An atomic MV-effect algebra with non-atomic center., Kybernetika 43 (2007), 3, 343-346. Zbl1149.06006MR2362723
  6. V. Olejček, Uniformly Archimedean MV-effect algebra is sharply dominating., Kybernetika 46 (2010), 6, 948-952. MR2797419
  7. Z. Riečanová, Modular atomic effect algebras and the existence of subadditive states., Kybernetika 40 (2004), 4, 459-468. MR2102364
  8. Z. Riečanová, I. Marinová, M. Zajac, Some aspects of generalized prelattice effect algebras., In: Lecture Notes in Artificial Intelligence (LNAI) 4342 ``Theory and Application of Relational Structures as Knowledge Instruments II"(H. de Swart et all, eds.), Springer 2006, pp. 290-317. 

NotesEmbed ?

top

You must be logged in to post comments.