Smoothness for the collision local time of two multidimensional bifractional Brownian motions

Guangjun Shen; Litan Yan; Chao Chen

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 969-989
  • ISSN: 0011-4642

Abstract

top
Let B H i , K i = { B t H i , K i , t 0 } , i = 1 , 2 be two independent, d -dimensional bifractional Brownian motions with respective indices H i ( 0 , 1 ) and K i ( 0 , 1 ] . Assume d 2 . One of the main motivations of this paper is to investigate smoothness of the collision local time T = 0 T δ ( B s H 1 , K 1 - B s H 2 , K 2 ) d s , T > 0 , where δ denotes the Dirac delta function. By an elementary method we show that T is smooth in the sense of Meyer-Watanabe if and only if min { H 1 K 1 , H 2 K 2 } < 1 / ( d + 2 ) .

How to cite

top

Shen, Guangjun, Yan, Litan, and Chen, Chao. "Smoothness for the collision local time of two multidimensional bifractional Brownian motions." Czechoslovak Mathematical Journal 62.4 (2012): 969-989. <http://eudml.org/doc/246327>.

@article{Shen2012,
abstract = {Let $B^\{H_\{i\},K_i\}=\lbrace B^\{H_\{i\},K_i\}_t, t\ge 0 \rbrace $, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\ge 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time \[ \ell \_T=\int \_\{0\}^\{T\}\delta (B\_\{s\}^\{H\_\{1\},K\_1\}-B\_\{s\}^\{H\_\{2\},K\_2\}) \{\rm d\} s, \qquad T>0, \] where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \lbrace H_\{1\}K_1,H_\{2\}K_2\rbrace <\{1\}/\{(d+2)\}$.},
author = {Shen, Guangjun, Yan, Litan, Chen, Chao},
journal = {Czechoslovak Mathematical Journal},
keywords = {bifractional Brownian motion; collision local time; intersection local time; chaos expansion; bifractional Brownian motion; collision local time; intersection local time; chaos expansion},
language = {eng},
number = {4},
pages = {969-989},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Smoothness for the collision local time of two multidimensional bifractional Brownian motions},
url = {http://eudml.org/doc/246327},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Shen, Guangjun
AU - Yan, Litan
AU - Chen, Chao
TI - Smoothness for the collision local time of two multidimensional bifractional Brownian motions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 969
EP - 989
AB - Let $B^{H_{i},K_i}=\lbrace B^{H_{i},K_i}_t, t\ge 0 \rbrace $, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\ge 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time \[ \ell _T=\int _{0}^{T}\delta (B_{s}^{H_{1},K_1}-B_{s}^{H_{2},K_2}) {\rm d} s, \qquad T>0, \] where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \lbrace H_{1}K_1,H_{2}K_2\rbrace <{1}/{(d+2)}$.
LA - eng
KW - bifractional Brownian motion; collision local time; intersection local time; chaos expansion; bifractional Brownian motion; collision local time; intersection local time; chaos expansion
UR - http://eudml.org/doc/246327
ER -

References

top
  1. An, L., Yan, L., Smoothness for the collision local time of fractional Brownian motion, Preprint, 2010. 
  2. Chen, C., Yan, L., 10.1016/j.spl.2011.01.021, Stat. Probab. Lett. 81 (2011), 1003-1012. (2011) Zbl1225.60062MR2803736DOI10.1016/j.spl.2011.01.021
  3. Es-Sebaiy, K., Tudor, C. A., 10.1142/S0219493707002050, Stoch. Dyn. 7 (2007), 365-388. (2007) Zbl1139.60321MR2351043DOI10.1142/S0219493707002050
  4. Houdré, Ch., Villa, J., 10.1090/conm/336/06034, Stochastic models. Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195-201. (2003) Zbl1046.60033MR2037165DOI10.1090/conm/336/06034
  5. Hu, Y., 10.1215/kjm/1250517630, J. Math, Kyoto Univ. 41 (2001), 233-250. (2001) MR1852981DOI10.1215/kjm/1250517630
  6. Hu, Y., Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Am. Math. Soc. 825 (2005). (2005) Zbl1072.60044MR2130224
  7. Jiang, Y., Wang, Y., 10.1007/s11425-009-0081-z, Sci. China, Ser. A 52 (2009), 1905-1919. (2009) Zbl1181.60059MR2544996DOI10.1007/s11425-009-0081-z
  8. Kruk, I., Russo, F., Tudor, C. A., 10.1016/j.jfa.2007.03.031, J. Funct. Anal. 249 (2007), 92-142. (2007) Zbl1126.60046MR2338856DOI10.1016/j.jfa.2007.03.031
  9. Lei, P., Nualart, D., 10.1016/j.spl.2008.10.009, Stat. Probab. Lett. 79 (2009), 619-624. (2009) Zbl1157.60313MR2499385DOI10.1016/j.spl.2008.10.009
  10. Mishura, Y., Stochastic Calculus for Fractional Brownian Motions and Related Processes, Lecture Notes in Mathematics 1929. Springer, Berlin (2008). (2008) MR2378138
  11. Nualart, D., Ortiz-Latorre, S., 10.1007/s10959-007-0106-x, J. Theor. Probab. 20 (2007), 759-767. (2007) Zbl1154.60028MR2359054DOI10.1007/s10959-007-0106-x
  12. Nualart, D., The Malliavin Calculus and Related Topics. 2nd ed, Probability and Its Applications. Springer, Berlin (2006). (2006) Zbl1099.60003MR2200233
  13. Russo, F., Tudor, C. A., 10.1016/j.spa.2005.11.013, Stochastic Processes Appl. 116 (2006), 830-856. (2006) Zbl1100.60019MR2218338DOI10.1016/j.spa.2005.11.013
  14. Shen, G., Yan, L., 10.1007/s11425-011-4228-3, Sci. China, Math. 54 (2011), 1859-1873. (2011) Zbl1236.60042MR2827020DOI10.1007/s11425-011-4228-3
  15. Tudor, C. A., Xiao, Y., 10.3150/07-BEJ6110, Bernoulli 13 (2007), 1023-1052. (2007) Zbl1132.60034MR2364225DOI10.3150/07-BEJ6110
  16. Watanabe, S., Lectures on Stochastic Differential Equations and Malliavin Calculus, Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin (1984). (1984) Zbl0546.60054MR0742628
  17. Yan, L., Liu, J., Chen, C., 10.1142/S0219493709002749, Stoch. Dyn. 9 (2009), 479-491. (2009) Zbl1180.60034MR2566911DOI10.1142/S0219493709002749
  18. Yan, L., Gao, B., Liu, J., The Bouleau-Yor identity for a bi-fractional Brownian motion, (to appear) in Stochastics 2012. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.