Smoothness for the collision local time of two multidimensional bifractional Brownian motions
Guangjun Shen; Litan Yan; Chao Chen
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 969-989
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShen, Guangjun, Yan, Litan, and Chen, Chao. "Smoothness for the collision local time of two multidimensional bifractional Brownian motions." Czechoslovak Mathematical Journal 62.4 (2012): 969-989. <http://eudml.org/doc/246327>.
@article{Shen2012,
abstract = {Let $B^\{H_\{i\},K_i\}=\lbrace B^\{H_\{i\},K_i\}_t, t\ge 0 \rbrace $, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\ge 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time \[ \ell \_T=\int \_\{0\}^\{T\}\delta (B\_\{s\}^\{H\_\{1\},K\_1\}-B\_\{s\}^\{H\_\{2\},K\_2\}) \{\rm d\} s, \qquad T>0, \]
where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \lbrace H_\{1\}K_1,H_\{2\}K_2\rbrace <\{1\}/\{(d+2)\}$.},
author = {Shen, Guangjun, Yan, Litan, Chen, Chao},
journal = {Czechoslovak Mathematical Journal},
keywords = {bifractional Brownian motion; collision local time; intersection local time; chaos expansion; bifractional Brownian motion; collision local time; intersection local time; chaos expansion},
language = {eng},
number = {4},
pages = {969-989},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Smoothness for the collision local time of two multidimensional bifractional Brownian motions},
url = {http://eudml.org/doc/246327},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Shen, Guangjun
AU - Yan, Litan
AU - Chen, Chao
TI - Smoothness for the collision local time of two multidimensional bifractional Brownian motions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 969
EP - 989
AB - Let $B^{H_{i},K_i}=\lbrace B^{H_{i},K_i}_t, t\ge 0 \rbrace $, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\ge 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time \[ \ell _T=\int _{0}^{T}\delta (B_{s}^{H_{1},K_1}-B_{s}^{H_{2},K_2}) {\rm d} s, \qquad T>0, \]
where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \lbrace H_{1}K_1,H_{2}K_2\rbrace <{1}/{(d+2)}$.
LA - eng
KW - bifractional Brownian motion; collision local time; intersection local time; chaos expansion; bifractional Brownian motion; collision local time; intersection local time; chaos expansion
UR - http://eudml.org/doc/246327
ER -
References
top- An, L., Yan, L., Smoothness for the collision local time of fractional Brownian motion, Preprint, 2010.
- Chen, C., Yan, L., 10.1016/j.spl.2011.01.021, Stat. Probab. Lett. 81 (2011), 1003-1012. (2011) Zbl1225.60062MR2803736DOI10.1016/j.spl.2011.01.021
- Es-Sebaiy, K., Tudor, C. A., 10.1142/S0219493707002050, Stoch. Dyn. 7 (2007), 365-388. (2007) Zbl1139.60321MR2351043DOI10.1142/S0219493707002050
- Houdré, Ch., Villa, J., 10.1090/conm/336/06034, Stochastic models. Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195-201. (2003) Zbl1046.60033MR2037165DOI10.1090/conm/336/06034
- Hu, Y., 10.1215/kjm/1250517630, J. Math, Kyoto Univ. 41 (2001), 233-250. (2001) MR1852981DOI10.1215/kjm/1250517630
- Hu, Y., Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Am. Math. Soc. 825 (2005). (2005) Zbl1072.60044MR2130224
- Jiang, Y., Wang, Y., 10.1007/s11425-009-0081-z, Sci. China, Ser. A 52 (2009), 1905-1919. (2009) Zbl1181.60059MR2544996DOI10.1007/s11425-009-0081-z
- Kruk, I., Russo, F., Tudor, C. A., 10.1016/j.jfa.2007.03.031, J. Funct. Anal. 249 (2007), 92-142. (2007) Zbl1126.60046MR2338856DOI10.1016/j.jfa.2007.03.031
- Lei, P., Nualart, D., 10.1016/j.spl.2008.10.009, Stat. Probab. Lett. 79 (2009), 619-624. (2009) Zbl1157.60313MR2499385DOI10.1016/j.spl.2008.10.009
- Mishura, Y., Stochastic Calculus for Fractional Brownian Motions and Related Processes, Lecture Notes in Mathematics 1929. Springer, Berlin (2008). (2008) MR2378138
- Nualart, D., Ortiz-Latorre, S., 10.1007/s10959-007-0106-x, J. Theor. Probab. 20 (2007), 759-767. (2007) Zbl1154.60028MR2359054DOI10.1007/s10959-007-0106-x
- Nualart, D., The Malliavin Calculus and Related Topics. 2nd ed, Probability and Its Applications. Springer, Berlin (2006). (2006) Zbl1099.60003MR2200233
- Russo, F., Tudor, C. A., 10.1016/j.spa.2005.11.013, Stochastic Processes Appl. 116 (2006), 830-856. (2006) Zbl1100.60019MR2218338DOI10.1016/j.spa.2005.11.013
- Shen, G., Yan, L., 10.1007/s11425-011-4228-3, Sci. China, Math. 54 (2011), 1859-1873. (2011) Zbl1236.60042MR2827020DOI10.1007/s11425-011-4228-3
- Tudor, C. A., Xiao, Y., 10.3150/07-BEJ6110, Bernoulli 13 (2007), 1023-1052. (2007) Zbl1132.60034MR2364225DOI10.3150/07-BEJ6110
- Watanabe, S., Lectures on Stochastic Differential Equations and Malliavin Calculus, Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin (1984). (1984) Zbl0546.60054MR0742628
- Yan, L., Liu, J., Chen, C., 10.1142/S0219493709002749, Stoch. Dyn. 9 (2009), 479-491. (2009) Zbl1180.60034MR2566911DOI10.1142/S0219493709002749
- Yan, L., Gao, B., Liu, J., The Bouleau-Yor identity for a bi-fractional Brownian motion, (to appear) in Stochastics 2012.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.