On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces

Ali Akbulut; Vagif Guliyev; Rza Mustafayev

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 1, page 27-43
  • ISSN: 0862-7959

Abstract

top
In the paper we find conditions on the pair ( ω 1 , ω 2 ) which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space p , ω 1 to another p , ω 2 , 1 < p < , and from the space 1 , ω 1 to the weak space W 1 , ω 2 . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.

How to cite

top

Akbulut, Ali, Guliyev, Vagif, and Mustafayev, Rza. "On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces." Mathematica Bohemica 137.1 (2012): 27-43. <http://eudml.org/doc/246373>.

@article{Akbulut2012,
abstract = {In the paper we find conditions on the pair $(\omega _1,\omega _2)$ which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space $\mathcal \{M\}_\{p,\omega _1\}$ to another $\mathcal \{M\}_\{p,\omega _2\}$, $1<p<\infty $, and from the space $\mathcal \{M\}_\{1,\omega _1\}$ to the weak space $W\mathcal \{M\}_\{1,\omega _2\}$. As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.},
author = {Akbulut, Ali, Guliyev, Vagif, Mustafayev, Rza},
journal = {Mathematica Bohemica},
keywords = {generalized Morrey space; maximal operator; Hardy operator; singular integral operator; generalized Morrey space; maximal operator; Hardy operator; singular integral operator},
language = {eng},
number = {1},
pages = {27-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces},
url = {http://eudml.org/doc/246373},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Akbulut, Ali
AU - Guliyev, Vagif
AU - Mustafayev, Rza
TI - On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 1
SP - 27
EP - 43
AB - In the paper we find conditions on the pair $(\omega _1,\omega _2)$ which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space $\mathcal {M}_{p,\omega _1}$ to another $\mathcal {M}_{p,\omega _2}$, $1<p<\infty $, and from the space $\mathcal {M}_{1,\omega _1}$ to the weak space $W\mathcal {M}_{1,\omega _2}$. As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.
LA - eng
KW - generalized Morrey space; maximal operator; Hardy operator; singular integral operator; generalized Morrey space; maximal operator; Hardy operator; singular integral operator
UR - http://eudml.org/doc/246373
ER -

References

top
  1. Burenkov, V. I., Guliyev, H. V., 10.4064/sm163-2-4, Studia Mathematica 163 (2004), 157-176. (2004) MR2047377DOI10.4064/sm163-2-4
  2. Burenkov, V. I., Guliyev, H. V., Guliyev, V. S., 10.1016/j.cam.2006.10.085, J. Comput. Appl. Math. 208 (2007), 280-301. (2007) MR2347750DOI10.1016/j.cam.2006.10.085
  3. Burenkov, V. I., Guliyev, V. S., Serbetci, A., Tararykova, T. V., Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces, Doklady Ross. Akad. Nauk. 422 (2008), 11-14. (2008) MR2475077
  4. Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch., Boundedness of the fractional maximal operator in Morrey-type spaces, Complex Var. Elliptic Equ. 55 (2010), 739-758. (2010) MR2674862
  5. Burenkov, V., Gogatishvili, A., Guliyev, V., Mustafayev, R., Boundedness of the fractional maximal operator in local Morrey-type spaces, Preprint, Institute of Mathematics, AS CR, Praha (2008), 20. (2008) MR2674862
  6. Calderón, A. P., Zygmund, A., 10.2307/2372441, Amer. J. Math. 79 (1957), 901-921. (1957) MR0100768DOI10.2307/2372441
  7. Carro, M., Pick, L., Soria, J., Stepanov, V. D., On embeddings between classical Lorentz spaces, Math. Ineq. & Appl. 4 (2001), 397-428. (2001) Zbl0996.46013MR1841071
  8. Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
  9. Fazio, G. D., Ragusa, M. A., 10.1006/jfan.1993.1032, J. Funct. Anal. 112 (1993), 241-256. (1993) Zbl0822.35036MR1213138DOI10.1006/jfan.1993.1032
  10. Guliyev, V. S., Integral operators on function spaces on homogeneous groups and on domains in n , Doctoral dissertation, Moskva, Mat. Inst. Steklov (1994), 329 Russian. (1994) 
  11. Guliyev, V. S., Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, Elm. (1999), 332 Russian. (1999) 
  12. Guliyev, V. S., Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. 2009, Art. ID 503948 20. Zbl1193.42082MR2579556
  13. Kurata, K., Sugano, S., 10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.0.CO;2-3, Math. Nachr. 209 (2000), 137-150. (2000) Zbl0939.35036MR1734362DOI10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.0.CO;2-3
  14. Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis S. Igari ICM 90 Satellite Proceedings, Springer, Tokyo (1991), 183-189. (1991) Zbl0771.42007MR1261439
  15. Morrey, C. B., 10.1090/S0002-9947-1938-1501936-8, Trans. Amer. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
  16. Murata, M., 10.2977/prims/1195170848, Pub. Res. Instit. Math. Sci. 26 (1990), 585-627. (1990) Zbl0726.31009MR1081506DOI10.2977/prims/1195170848
  17. Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 (1994), 95-103. (1994) MR1273325DOI10.1002/mana.19941660108
  18. Li, H. Q., 10.1006/jfan.1998.3347, J. Funct. Anal. 161 (1999), 152-218. (1999) Zbl0929.22005MR1670222DOI10.1006/jfan.1998.3347
  19. Peetre, J., On convolution operators leaving p , λ spaces invariant, Ann. Mat. Appl. IV. Ser. 72 (1966), 295-304. (1966) MR0209917
  20. Shen, Z. W., 10.5802/aif.1463, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. (1995) MR1343560DOI10.5802/aif.1463
  21. Smith, H. F., 10.1215/S0012-7094-91-06314-3, Duke Math. J. 63 (1991), 343-354. (1991) Zbl0777.35002MR1115111DOI10.1215/S0012-7094-91-06314-3
  22. Stein, E. M., Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ (1993). (1993) Zbl0821.42001MR1232192
  23. Sugano, S., Estimates for the operators V α ( - Δ + V ) - β and V α ( - Δ + V ) - β with certain nonnegative potentials V , Tokyo J. Math. 21 (1998), 441-452. (1998) MR1663618
  24. Thangavelu, S., 10.1080/03605309908820720, Commun. Partial Differ. Equations 15 (1990), 1199-1215. (1990) MR1070242DOI10.1080/03605309908820720
  25. Zhong, J. P., Harmonic analysis for some Schrödinger type operators, PhD thesis, Princeton University (1993). (1993) MR2689454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.