On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces
Ali Akbulut; Vagif Guliyev; Rza Mustafayev
Mathematica Bohemica (2012)
- Volume: 137, Issue: 1, page 27-43
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAkbulut, Ali, Guliyev, Vagif, and Mustafayev, Rza. "On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces." Mathematica Bohemica 137.1 (2012): 27-43. <http://eudml.org/doc/246373>.
@article{Akbulut2012,
abstract = {In the paper we find conditions on the pair $(\omega _1,\omega _2)$ which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space $\mathcal \{M\}_\{p,\omega _1\}$ to another $\mathcal \{M\}_\{p,\omega _2\}$, $1<p<\infty $, and from the space $\mathcal \{M\}_\{1,\omega _1\}$ to the weak space $W\mathcal \{M\}_\{1,\omega _2\}$. As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.},
author = {Akbulut, Ali, Guliyev, Vagif, Mustafayev, Rza},
journal = {Mathematica Bohemica},
keywords = {generalized Morrey space; maximal operator; Hardy operator; singular integral operator; generalized Morrey space; maximal operator; Hardy operator; singular integral operator},
language = {eng},
number = {1},
pages = {27-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces},
url = {http://eudml.org/doc/246373},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Akbulut, Ali
AU - Guliyev, Vagif
AU - Mustafayev, Rza
TI - On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 1
SP - 27
EP - 43
AB - In the paper we find conditions on the pair $(\omega _1,\omega _2)$ which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space $\mathcal {M}_{p,\omega _1}$ to another $\mathcal {M}_{p,\omega _2}$, $1<p<\infty $, and from the space $\mathcal {M}_{1,\omega _1}$ to the weak space $W\mathcal {M}_{1,\omega _2}$. As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.
LA - eng
KW - generalized Morrey space; maximal operator; Hardy operator; singular integral operator; generalized Morrey space; maximal operator; Hardy operator; singular integral operator
UR - http://eudml.org/doc/246373
ER -
References
top- Burenkov, V. I., Guliyev, H. V., 10.4064/sm163-2-4, Studia Mathematica 163 (2004), 157-176. (2004) MR2047377DOI10.4064/sm163-2-4
- Burenkov, V. I., Guliyev, H. V., Guliyev, V. S., 10.1016/j.cam.2006.10.085, J. Comput. Appl. Math. 208 (2007), 280-301. (2007) MR2347750DOI10.1016/j.cam.2006.10.085
- Burenkov, V. I., Guliyev, V. S., Serbetci, A., Tararykova, T. V., Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces, Doklady Ross. Akad. Nauk. 422 (2008), 11-14. (2008) MR2475077
- Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch., Boundedness of the fractional maximal operator in Morrey-type spaces, Complex Var. Elliptic Equ. 55 (2010), 739-758. (2010) MR2674862
- Burenkov, V., Gogatishvili, A., Guliyev, V., Mustafayev, R., Boundedness of the fractional maximal operator in local Morrey-type spaces, Preprint, Institute of Mathematics, AS CR, Praha (2008), 20. (2008) MR2674862
- Calderón, A. P., Zygmund, A., 10.2307/2372441, Amer. J. Math. 79 (1957), 901-921. (1957) MR0100768DOI10.2307/2372441
- Carro, M., Pick, L., Soria, J., Stepanov, V. D., On embeddings between classical Lorentz spaces, Math. Ineq. & Appl. 4 (2001), 397-428. (2001) Zbl0996.46013MR1841071
- Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
- Fazio, G. D., Ragusa, M. A., 10.1006/jfan.1993.1032, J. Funct. Anal. 112 (1993), 241-256. (1993) Zbl0822.35036MR1213138DOI10.1006/jfan.1993.1032
- Guliyev, V. S., Integral operators on function spaces on homogeneous groups and on domains in , Doctoral dissertation, Moskva, Mat. Inst. Steklov (1994), 329 Russian. (1994)
- Guliyev, V. S., Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, Elm. (1999), 332 Russian. (1999)
- Guliyev, V. S., Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. 2009, Art. ID 503948 20. Zbl1193.42082MR2579556
- Kurata, K., Sugano, S., 10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.0.CO;2-3, Math. Nachr. 209 (2000), 137-150. (2000) Zbl0939.35036MR1734362DOI10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.0.CO;2-3
- Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis S. Igari ICM 90 Satellite Proceedings, Springer, Tokyo (1991), 183-189. (1991) Zbl0771.42007MR1261439
- Morrey, C. B., 10.1090/S0002-9947-1938-1501936-8, Trans. Amer. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
- Murata, M., 10.2977/prims/1195170848, Pub. Res. Instit. Math. Sci. 26 (1990), 585-627. (1990) Zbl0726.31009MR1081506DOI10.2977/prims/1195170848
- Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 (1994), 95-103. (1994) MR1273325DOI10.1002/mana.19941660108
- Li, H. Q., 10.1006/jfan.1998.3347, J. Funct. Anal. 161 (1999), 152-218. (1999) Zbl0929.22005MR1670222DOI10.1006/jfan.1998.3347
- Peetre, J., On convolution operators leaving spaces invariant, Ann. Mat. Appl. IV. Ser. 72 (1966), 295-304. (1966) MR0209917
- Shen, Z. W., 10.5802/aif.1463, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. (1995) MR1343560DOI10.5802/aif.1463
- Smith, H. F., 10.1215/S0012-7094-91-06314-3, Duke Math. J. 63 (1991), 343-354. (1991) Zbl0777.35002MR1115111DOI10.1215/S0012-7094-91-06314-3
- Stein, E. M., Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ (1993). (1993) Zbl0821.42001MR1232192
- Sugano, S., Estimates for the operators and with certain nonnegative potentials , Tokyo J. Math. 21 (1998), 441-452. (1998) MR1663618
- Thangavelu, S., 10.1080/03605309908820720, Commun. Partial Differ. Equations 15 (1990), 1199-1215. (1990) MR1070242DOI10.1080/03605309908820720
- Zhong, J. P., Harmonic analysis for some Schrödinger type operators, PhD thesis, Princeton University (1993). (1993) MR2689454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.