estimates for Schrödinger operators with certain potentials
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 2, page 513-546
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShen, Zhongwei. "$L^p$ estimates for Schrödinger operators with certain potentials." Annales de l'institut Fourier 45.2 (1995): 513-546. <http://eudml.org/doc/75127>.
@article{Shen1995,
abstract = {We consider the Schrödinger operators $-\Delta +V(x)$ in $\{\Bbb R\}^n$ where the nonnegative potential $V(x)$ belongs to the reverse Hölder class $B_q$ for some $q\ge n/2$. We obtain the optimal $L^p$ estimates for the operators $(- \Delta +V)^\{i\gamma \},\nabla ^2 (- \Delta +V)^\{-1\}, \nabla (- \Delta +V)^\{-1/2\}$ and $\nabla (- \Delta +V)^\{-1\}$ where $\gamma \in \{\Bbb R\}$. In particular we show that $(- \Delta +V)^\{i\gamma \}$ is a Calderón-Zygmund operator if $V\in B_\{n/2\}$ and $\nabla (- \Delta +V)^\{-1/2\}, \nabla (- \Delta +V)^\{-1\}\nabla $ are Calderón-Zygmund operators if $V\in B_n$.},
author = {Shen, Zhongwei},
journal = {Annales de l'institut Fourier},
keywords = { estimates; reverse Hölder class},
language = {eng},
number = {2},
pages = {513-546},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L^p$ estimates for Schrödinger operators with certain potentials},
url = {http://eudml.org/doc/75127},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Shen, Zhongwei
TI - $L^p$ estimates for Schrödinger operators with certain potentials
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 513
EP - 546
AB - We consider the Schrödinger operators $-\Delta +V(x)$ in ${\Bbb R}^n$ where the nonnegative potential $V(x)$ belongs to the reverse Hölder class $B_q$ for some $q\ge n/2$. We obtain the optimal $L^p$ estimates for the operators $(- \Delta +V)^{i\gamma },\nabla ^2 (- \Delta +V)^{-1}, \nabla (- \Delta +V)^{-1/2}$ and $\nabla (- \Delta +V)^{-1}$ where $\gamma \in {\Bbb R}$. In particular we show that $(- \Delta +V)^{i\gamma }$ is a Calderón-Zygmund operator if $V\in B_{n/2}$ and $\nabla (- \Delta +V)^{-1/2}, \nabla (- \Delta +V)^{-1}\nabla $ are Calderón-Zygmund operators if $V\in B_n$.
LA - eng
KW - estimates; reverse Hölder class
UR - http://eudml.org/doc/75127
ER -
References
top- [CM] R. COIFMAN and Y. MEYER, Au-delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978). Zbl0483.35082MR81b:47061
- [D] XUAN THINH DUONG, H∞ Functional Calculus of Elliptic Partial Differential Operators in Lp Spaces, Ph.D. Thesis, Macquarie University, 1990. Zbl0708.35029
- [F] C. FEFFERMAN, The Uncertainty Principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. Zbl0526.35080MR85f:35001
- [G] F. GEHRING, The Lp-integrability of the Partial Derivatives of a Quasi-conformal Mapping, Acta Math., 130 (1973), 265-277. Zbl0258.30021MR53 #5861
- [GT] D. GILBERG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Second Ed., Springer Verlag, 1983. Zbl0562.35001
- [H] W. HEBISH, A Multiplier Theorem for Schrödinger operators, Colloquium Math., LX/LXI (1990), 659-664. Zbl0779.35025
- [HN] B. HELFFER and J. NOURRIGAT, Une Ingégalité L2, preprint.
- [M] B. MUCKENHOUPT, Weighted Norm Inequality for the Hardy Maximal Function, Trans. Amer. Math. Soc., 165 (1972), 207-226. Zbl0236.26016MR45 #2461
- [RS] L. ROTHSCHILD and E. STEIN, Hypoelliptic Differential Operators and Nilpotent Groups, Acta Math., 137 (1977), 247-320. Zbl0346.35030MR55 #9171
- [Sh] Z. SHEN, On the Neumann Problem for Schrödinger Operators in Lipschitz Domains, Indiana Univ. Math. J., 43(1) (1994), 143-176. Zbl0798.35044MR95i:35065
- [Sm] H. F. SMITH, Parametrix Construction for a Class of Subelliptic Differential Operators, Duke Math. J., (2)63 (1991), 343-354. Zbl0777.35002MR92h:35049
- [St1] E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280
- [St2] E. STEIN, Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001
- [T] S. THANGAVELU, Riesz Transforms and the Wave Equation for the Hermite Operators, Comm. in P.D.E., (8)15 (1990), 1199-1215. Zbl0709.35068MR92e:35012
- [Z] J. ZHONG, Harmonic Analysis for Some Schrödinger Type Operators, Ph.D. Thesis, Princeton University, 1993.
Citations in EuDML Documents
top- Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang, Some estimates for commutators of Riesz transform associated with Schrödinger type operators
- Zhongwei Shen, The magnetic Schrödinger operator and reverse Hölder class
- Ali Akbulut, Vagif Guliyev, Rza Mustafayev, On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces
- Kazuhiro Kurata, Satoko Sugano, Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
- Nguyen Ngoc Trong, Le Xuan Truong, Generalized Morrey spaces associated to Schrödinger operators and applications
- Jacek Dziubański, A note on Schrödinger operators with polynomial potentials
- Pascal Auscher, Besma Ben Ali, Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.