L p estimates for Schrödinger operators with certain potentials

Zhongwei Shen

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 2, page 513-546
  • ISSN: 0373-0956

Abstract

top
We consider the Schrödinger operators - Δ + V ( x ) in n where the nonnegative potential V ( x ) belongs to the reverse Hölder class B q for some q n / 2 . We obtain the optimal L p estimates for the operators ( - Δ + V ) i γ , 2 ( - Δ + V ) - 1 , ( - Δ + V ) - 1 / 2 and ( - Δ + V ) - 1 where γ . In particular we show that ( - Δ + V ) i γ is a Calderón-Zygmund operator if V B n / 2 and ( - Δ + V ) - 1 / 2 , ( - Δ + V ) - 1 are Calderón-Zygmund operators if V B n .

How to cite

top

Shen, Zhongwei. "$L^p$ estimates for Schrödinger operators with certain potentials." Annales de l'institut Fourier 45.2 (1995): 513-546. <http://eudml.org/doc/75127>.

@article{Shen1995,
abstract = {We consider the Schrödinger operators $-\Delta +V(x)$ in $\{\Bbb R\}^n$ where the nonnegative potential $V(x)$ belongs to the reverse Hölder class $B_q$ for some $q\ge n/2$. We obtain the optimal $L^p$ estimates for the operators $(- \Delta +V)^\{i\gamma \},\nabla ^2 (- \Delta +V)^\{-1\}, \nabla (- \Delta +V)^\{-1/2\}$ and $\nabla (- \Delta +V)^\{-1\}$ where $\gamma \in \{\Bbb R\}$. In particular we show that $(- \Delta +V)^\{i\gamma \}$ is a Calderón-Zygmund operator if $V\in B_\{n/2\}$ and $\nabla (- \Delta +V)^\{-1/2\}, \nabla (- \Delta +V)^\{-1\}\nabla $ are Calderón-Zygmund operators if $V\in B_n$.},
author = {Shen, Zhongwei},
journal = {Annales de l'institut Fourier},
keywords = { estimates; reverse Hölder class},
language = {eng},
number = {2},
pages = {513-546},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L^p$ estimates for Schrödinger operators with certain potentials},
url = {http://eudml.org/doc/75127},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Shen, Zhongwei
TI - $L^p$ estimates for Schrödinger operators with certain potentials
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 513
EP - 546
AB - We consider the Schrödinger operators $-\Delta +V(x)$ in ${\Bbb R}^n$ where the nonnegative potential $V(x)$ belongs to the reverse Hölder class $B_q$ for some $q\ge n/2$. We obtain the optimal $L^p$ estimates for the operators $(- \Delta +V)^{i\gamma },\nabla ^2 (- \Delta +V)^{-1}, \nabla (- \Delta +V)^{-1/2}$ and $\nabla (- \Delta +V)^{-1}$ where $\gamma \in {\Bbb R}$. In particular we show that $(- \Delta +V)^{i\gamma }$ is a Calderón-Zygmund operator if $V\in B_{n/2}$ and $\nabla (- \Delta +V)^{-1/2}, \nabla (- \Delta +V)^{-1}\nabla $ are Calderón-Zygmund operators if $V\in B_n$.
LA - eng
KW - estimates; reverse Hölder class
UR - http://eudml.org/doc/75127
ER -

References

top
  1. [CM] R. COIFMAN and Y. MEYER, Au-delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978). Zbl0483.35082MR81b:47061
  2. [D] XUAN THINH DUONG, H∞ Functional Calculus of Elliptic Partial Differential Operators in Lp Spaces, Ph.D. Thesis, Macquarie University, 1990. Zbl0708.35029
  3. [F] C. FEFFERMAN, The Uncertainty Principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. Zbl0526.35080MR85f:35001
  4. [G] F. GEHRING, The Lp-integrability of the Partial Derivatives of a Quasi-conformal Mapping, Acta Math., 130 (1973), 265-277. Zbl0258.30021MR53 #5861
  5. [GT] D. GILBERG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Second Ed., Springer Verlag, 1983. Zbl0562.35001
  6. [H] W. HEBISH, A Multiplier Theorem for Schrödinger operators, Colloquium Math., LX/LXI (1990), 659-664. Zbl0779.35025
  7. [HN] B. HELFFER and J. NOURRIGAT, Une Ingégalité L2, preprint. 
  8. [M] B. MUCKENHOUPT, Weighted Norm Inequality for the Hardy Maximal Function, Trans. Amer. Math. Soc., 165 (1972), 207-226. Zbl0236.26016MR45 #2461
  9. [RS] L. ROTHSCHILD and E. STEIN, Hypoelliptic Differential Operators and Nilpotent Groups, Acta Math., 137 (1977), 247-320. Zbl0346.35030MR55 #9171
  10. [Sh] Z. SHEN, On the Neumann Problem for Schrödinger Operators in Lipschitz Domains, Indiana Univ. Math. J., 43(1) (1994), 143-176. Zbl0798.35044MR95i:35065
  11. [Sm] H. F. SMITH, Parametrix Construction for a Class of Subelliptic Differential Operators, Duke Math. J., (2)63 (1991), 343-354. Zbl0777.35002MR92h:35049
  12. [St1] E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501MR44 #7280
  13. [St2] E. STEIN, Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001
  14. [T] S. THANGAVELU, Riesz Transforms and the Wave Equation for the Hermite Operators, Comm. in P.D.E., (8)15 (1990), 1199-1215. Zbl0709.35068MR92e:35012
  15. [Z] J. ZHONG, Harmonic Analysis for Some Schrödinger Type Operators, Ph.D. Thesis, Princeton University, 1993. 

Citations in EuDML Documents

top
  1. Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang, Some estimates for commutators of Riesz transform associated with Schrödinger type operators
  2. Zhongwei Shen, The magnetic Schrödinger operator and reverse Hölder class
  3. Ali Akbulut, Vagif Guliyev, Rza Mustafayev, On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces
  4. Kazuhiro Kurata, Satoko Sugano, Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
  5. Nguyen Ngoc Trong, Le Xuan Truong, Generalized Morrey spaces associated to Schrödinger operators and applications
  6. Jacek Dziubański, A note on Schrödinger operators with polynomial potentials
  7. Pascal Auscher, Besma Ben Ali, Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.