Pseudoautomorphisms of Bruck loops and their generalizations
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 3, page 383-389
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGreer, Mark, and Kinyon, Michael. "Pseudoautomorphisms of Bruck loops and their generalizations." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 383-389. <http://eudml.org/doc/246385>.
@article{Greer2012,
abstract = {We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha $ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.},
author = {Greer, Mark, Kinyon, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudoautomorphism; Bruck loop; weak commutative inverse property; pseudoautomorphisms; Bruck loops; weak commutative inverse property loops},
language = {eng},
number = {3},
pages = {383-389},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pseudoautomorphisms of Bruck loops and their generalizations},
url = {http://eudml.org/doc/246385},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Greer, Mark
AU - Kinyon, Michael
TI - Pseudoautomorphisms of Bruck loops and their generalizations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 383
EP - 389
AB - We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha $ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.
LA - eng
KW - pseudoautomorphism; Bruck loop; weak commutative inverse property; pseudoautomorphisms; Bruck loops; weak commutative inverse property loops
UR - http://eudml.org/doc/246385
ER -
References
top- Aschbacher M., 10.1016/j.jalgebra.2005.03.005, J. Algebra 288 (2005), 99–136. Zbl1090.20037MR2138373DOI10.1016/j.jalgebra.2005.03.005
- Aschbacher M., Kinyon M.K., Phillips J.D., 10.1090/S0002-9947-05-03778-5, Trans. Amer. Math. Soc. 358 (2006), 3061–3075. Zbl1102.20046MR2216258DOI10.1090/S0002-9947-05-03778-5
- Baumeister B., Stein A., Self-invariant -factorizations of complete graphs and finite Bol loops of exponent , Beiträge Algebra Geom. 51 (2010), 117–135. Zbl1208.20064MR2650481
- Baumeister B., Stroth G., Stein A., 10.1016/j.jalgebra.2010.10.033, J. Algebra 327 (2011), 316–336. Zbl1233.20059MR2746041DOI10.1016/j.jalgebra.2010.10.033
- Baumeister B., Stein A., 10.1016/j.jalgebra.2010.11.017, J. Algebra 330 (2011), 206–220. Zbl1235.20059MR2774625DOI10.1016/j.jalgebra.2010.11.017
- Bruck R.H., 10.1090/S0002-9939-1952-0047635-6, Proc. Amer. Math. Soc. 3 (1952), 66–72. Zbl0046.01803MR0047635DOI10.1090/S0002-9939-1952-0047635-6
- Bruck R.H., A Survey of Binary Systems, Springer, Berlin, 1971. Zbl0141.01401MR0093552
- Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. MR0175991DOI10.1016/0021-8693(64)90017-1
- Johnson K.W., Sharma B.L., A variety of loops, Ann. Soc. Sci. Bruxelles Sér. I 92 (1978), 25–41. Zbl0381.20056MR0498926
- Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
- McCune W.W., Prover9, version 2009-11A, http://www.cs.unm.edu/mccune/prover9/.
- Nagy G.P., 10.1090/S0002-9947-09-04646-7, Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR2515813DOI10.1090/S0002-9947-09-04646-7
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Math., 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
- Ungar A.A., Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, Fundamental Theories of Physics, 117, Kluwer, Dordrecht, 2001. Zbl0972.83002MR1978122
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.