Pseudoautomorphisms of Bruck loops and their generalizations

Mark Greer; Michael Kinyon

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 3, page 383-389
  • ISSN: 0010-2628

Abstract

top
We show that in a weak commutative inverse property loop, such as a Bruck loop, if α is a right [left] pseudoautomorphism with companion c , then c [ c 2 ] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.

How to cite

top

Greer, Mark, and Kinyon, Michael. "Pseudoautomorphisms of Bruck loops and their generalizations." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 383-389. <http://eudml.org/doc/246385>.

@article{Greer2012,
abstract = {We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha $ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.},
author = {Greer, Mark, Kinyon, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudoautomorphism; Bruck loop; weak commutative inverse property; pseudoautomorphisms; Bruck loops; weak commutative inverse property loops},
language = {eng},
number = {3},
pages = {383-389},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pseudoautomorphisms of Bruck loops and their generalizations},
url = {http://eudml.org/doc/246385},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Greer, Mark
AU - Kinyon, Michael
TI - Pseudoautomorphisms of Bruck loops and their generalizations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 383
EP - 389
AB - We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha $ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.
LA - eng
KW - pseudoautomorphism; Bruck loop; weak commutative inverse property; pseudoautomorphisms; Bruck loops; weak commutative inverse property loops
UR - http://eudml.org/doc/246385
ER -

References

top
  1. Aschbacher M., 10.1016/j.jalgebra.2005.03.005, J. Algebra 288 (2005), 99–136. Zbl1090.20037MR2138373DOI10.1016/j.jalgebra.2005.03.005
  2. Aschbacher M., Kinyon M.K., Phillips J.D., 10.1090/S0002-9947-05-03778-5, Trans. Amer. Math. Soc. 358 (2006), 3061–3075. Zbl1102.20046MR2216258DOI10.1090/S0002-9947-05-03778-5
  3. Baumeister B., Stein A., Self-invariant 1 -factorizations of complete graphs and finite Bol loops of exponent 2 , Beiträge Algebra Geom. 51 (2010), 117–135. Zbl1208.20064MR2650481
  4. Baumeister B., Stroth G., Stein A., 10.1016/j.jalgebra.2010.10.033, J. Algebra 327 (2011), 316–336. Zbl1233.20059MR2746041DOI10.1016/j.jalgebra.2010.10.033
  5. Baumeister B., Stein A., 10.1016/j.jalgebra.2010.11.017, J. Algebra 330 (2011), 206–220. Zbl1235.20059MR2774625DOI10.1016/j.jalgebra.2010.11.017
  6. Bruck R.H., 10.1090/S0002-9939-1952-0047635-6, Proc. Amer. Math. Soc. 3 (1952), 66–72. Zbl0046.01803MR0047635DOI10.1090/S0002-9939-1952-0047635-6
  7. Bruck R.H., A Survey of Binary Systems, Springer, Berlin, 1971. Zbl0141.01401MR0093552
  8. Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. MR0175991DOI10.1016/0021-8693(64)90017-1
  9. Johnson K.W., Sharma B.L., A variety of loops, Ann. Soc. Sci. Bruxelles Sér. I 92 (1978), 25–41. Zbl0381.20056MR0498926
  10. Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
  11. McCune W.W., Prover9, version 2009-11A, http://www.cs.unm.edu/mccune/prover9/. 
  12. Nagy G.P., 10.1090/S0002-9947-09-04646-7, Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR2515813DOI10.1090/S0002-9947-09-04646-7
  13. Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Math., 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
  14. Ungar A.A., Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, Fundamental Theories of Physics, 117, Kluwer, Dordrecht, 2001. Zbl0972.83002MR1978122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.