Identities and the group of isostrophisms

Aleš Drápal; Viktor Alekseevich Shcherbakov

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 3, page 347-374
  • ISSN: 0010-2628

Abstract

top
In this paper we reexamine the concept of isostrophy. We connect it to the notion of term equivalence, and describe the action of dihedral groups that are associated with loops by means of isostrophy. We also use it to prove and present in a new way some well known facts on m -inverse loops and middle Bol loops.

How to cite

top

Drápal, Aleš, and Shcherbakov, Viktor Alekseevich. "Identities and the group of isostrophisms." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 347-374. <http://eudml.org/doc/246910>.

@article{Drápal2012,
abstract = {In this paper we reexamine the concept of isostrophy. We connect it to the notion of term equivalence, and describe the action of dihedral groups that are associated with loops by means of isostrophy. We also use it to prove and present in a new way some well known facts on $m$-inverse loops and middle Bol loops.},
author = {Drápal, Aleš, Shcherbakov, Viktor Alekseevich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {isostrophe; isostrophism; paratope; paratopism; middle Bol; varieties of loops; inverse loops; isostrophes; isostrophisms; paratopes; paratopisms; middle Bol loops},
language = {eng},
number = {3},
pages = {347-374},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Identities and the group of isostrophisms},
url = {http://eudml.org/doc/246910},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Drápal, Aleš
AU - Shcherbakov, Viktor Alekseevich
TI - Identities and the group of isostrophisms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 347
EP - 374
AB - In this paper we reexamine the concept of isostrophy. We connect it to the notion of term equivalence, and describe the action of dihedral groups that are associated with loops by means of isostrophy. We also use it to prove and present in a new way some well known facts on $m$-inverse loops and middle Bol loops.
LA - eng
KW - isostrophe; isostrophism; paratope; paratopism; middle Bol; varieties of loops; inverse loops; isostrophes; isostrophisms; paratopes; paratopisms; middle Bol loops
UR - http://eudml.org/doc/246910
ER -

References

top
  1. Artzy R., 10.1090/S0002-9939-1955-0069804-4, Proc. Amer. Math. Soc. 6 (1955), 448–453. Zbl0066.27101MR0069804DOI10.1090/S0002-9939-1955-0069804-4
  2. Artzy R., 10.1090/S0002-9947-1959-0106958-3, Trans. Amer. Math. Soc. 91 (1959), 480–492. Zbl0086.24702MR0106958DOI10.1090/S0002-9947-1959-0106958-3
  3. Artzy R., 10.1090/S0002-9939-1960-0117295-9, Proc. Amer. Math. Soc. 11 (1960), 847–851. Zbl0101.25802MR0117295DOI10.1090/S0002-9939-1960-0117295-9
  4. Artzy R., 10.1007/BF01234928, Arch. Math. (Basel) 14 (1963), 95–101. Zbl0228.20068MR0148786DOI10.1007/BF01234928
  5. Basarab A.S., Belioglo A.I., Universalno-avtomorfno-inversnye 𝒢 -lupy, Mat. Issled. 51 (1979), 3–7. MR0544326
  6. Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967. MR0218483
  7. Belousov V.D., Vzaimmobratnye kvazigruppy i lupy, Izvestiia Akademii nauk Moldavskoi SSR 1963, issue 11, 3–10. 
  8. Csörgö P., Drápal A., Kinyon M.K., 10.1142/S0218196709005482, Internat. J. Algebra Comput. 19 (2009), 1049–1088. MR2603718DOI10.1142/S0218196709005482
  9. Evans T., On multiplicative systems defined by generators and relations, I. Normal form theorems, Proc. Cambridge Philos. Soc. 47 (1951), 637–649. Zbl0043.02001MR0043764
  10. Evans T., On multiplicative systems defined by generators and relations, II. Monogenic loops, Proc. Cambridge Philos. Soc. 49 (1953), 579–589. Zbl0051.01102MR0057865
  11. Gvaramija A.A., Ob odnom klasse lup, Moskov. Gos. Ped. Inst. Učen. Zap. No. 375 (1971), 25–34. MR0323936
  12. Greer M., Kinyon M., Pseudoautomorphisms of Bruck loops and their generalizations, Comment. Math. Univ. Carolin. 53 (2012), no. 3, 383–389. 
  13. Johnson K.W., Sharma B.L., A variety of loops, Ann. Soc. Sci. Bruxelles Sér. I 92 (1975), 25–41. Zbl0381.20056MR0498926
  14. Karkliňš B.B., Karkliň V.B., Inversnyje lupy, Mat. Issled. 39 (1976), 87–101. 
  15. Karkliňš B.B., Karkliň V.B., Universalno-avtomorfno-inversnyje lupy, Mat. Issled. 39 (1976), 82–86. 
  16. Keedwell A.D., Crossed-inverse quasigroups with long inverse cycles and applications to cryptography, Australas. J. Combin. 20 (1999), 241–250. Zbl0935.20061MR1723878
  17. Keedwell A.D., Shcherbacov V.A., On m -inverse loops and quasigroups with a long inverse cycle, Australas. J. Combin. 26 (2002), 99–119. Zbl1020.20041MR1918146
  18. Keedwell A.D., Shcherbacov V.A., 10.1016/S0012-365X(02)00814-2, Discrete Math. 266 (2003), 275–291. Zbl1070.20077MR1991723DOI10.1016/S0012-365X(02)00814-2
  19. Keedwell A.D., Shcherbacov V.A., 10.1016/j.disc.2004.06.020, Discrete Math. 288 (2004), 61–71. Zbl1071.20058MR2101117DOI10.1016/j.disc.2004.06.020
  20. Onoĭ V.I., Solution of a problem on inverse loops (Russian), General algebra and discrete geometry 161 (1980), 53–58. MR0647646
  21. Osborn J.M., 10.2140/pjm.1960.10.295, Pacific J. Math. 10 (1960), 295–304. MR0111800DOI10.2140/pjm.1960.10.295
  22. Pflugfelder H.O., Quasigroups and Loops: Introduction, Helderman, Berlin, 1990. Zbl0715.20043MR1125767
  23. Robinson D.A., 10.1090/S0002-9947-1966-0194545-4, Trans. Amer. Math. Soc. 123 (1966), 341–354. Zbl0803.20053MR0194545DOI10.1090/S0002-9947-1966-0194545-4
  24. Sade A., Paratopie et autoparatopie des quasigroupes, Ann. Soc. Sci. Bruxelles Sér. I 76 (1962), 88–96. Zbl0105.01502MR0152600
  25. Syrbu P., Loops with universal elasticity, Quasigroups Related Systems 1 (1994), 57–65. Zbl0948.20047MR1327946
  26. Syrbu P., On middle Bol loops, ROMAI J. 6 (2010), 229–236. MR2786138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.