Limits of Bayesian decision related quantities of binomial asset price models
Kybernetika (2012)
- Volume: 48, Issue: 4, page 750-767
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topStummer, Wolfgang, and Lao, Wei. "Limits of Bayesian decision related quantities of binomial asset price models." Kybernetika 48.4 (2012): 750-767. <http://eudml.org/doc/246426>.
@article{Stummer2012,
abstract = {We study Bayesian decision making based on observations $\left(X_\{n,t\} : t\in \lbrace 0,\frac\{T\}\{n\},2\frac\{T\}\{n\},\ldots ,n\frac\{T\}\{n\}\rbrace \right)$ ($T>0, n\in \mathbb \{N\}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty $), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions.},
author = {Stummer, Wolfgang, Lao, Wei},
journal = {Kybernetika},
keywords = {Bayesian decisions; power divergences; Cox-Ross-Rubinstein binomial asset price models; power divergences; Bayesian decisions; Cox-Ross-Rubinstein binomial asset price models},
language = {eng},
number = {4},
pages = {750-767},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Limits of Bayesian decision related quantities of binomial asset price models},
url = {http://eudml.org/doc/246426},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Stummer, Wolfgang
AU - Lao, Wei
TI - Limits of Bayesian decision related quantities of binomial asset price models
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 750
EP - 767
AB - We study Bayesian decision making based on observations $\left(X_{n,t} : t\in \lbrace 0,\frac{T}{n},2\frac{T}{n},\ldots ,n\frac{T}{n}\rbrace \right)$ ($T>0, n\in \mathbb {N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty $), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions.
LA - eng
KW - Bayesian decisions; power divergences; Cox-Ross-Rubinstein binomial asset price models; power divergences; Bayesian decisions; Cox-Ross-Rubinstein binomial asset price models
UR - http://eudml.org/doc/246426
ER -
References
top- A. K. Bera, Y. Bilias, 10.1016/S0304-4076(01)00113-0, J. Econometrics 107 (2002), 51-86. Zbl1088.62505MR1889952DOI10.1016/S0304-4076(01)00113-0
- A. Berlinet, I. Vajda, 10.1080/02331880903573385, Statistics 45 (2011), 479-495. Zbl1229.62035MR2832180DOI10.1080/02331880903573385
- M. Broniatowski, I. Vajda, Several applications of divergence criteria in continuous families., To appear in Kybernetika (2012). See also Research Report No. 2257, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2009; moreover, see arXiv:0911.0937v1 [math.ST].
- J. C. Cox, S. A. Ross, M. Rubinstein, 10.1016/0304-405X(79)90015-1, J. Finan. Econ. 7 (1979), 229-263. Zbl1131.91333DOI10.1016/0304-405X(79)90015-1
- N. Cressie, T. R. C. Read, Multinomial goodness-of-fit tests., J. Roy. Stat. Soc. Ser. B Stat. Methodol. 46 (1984), 440-464. Zbl0571.62017MR0790631
- I. Csiszár, F. Matúš, 10.1007/s00440-007-0084-z, Probab. Theory Related Fields 141 (2008), 213-246. Zbl1133.62039MR2372970DOI10.1007/s00440-007-0084-z
- I. Csiszár, P. C. Shields, 10.1561/0100000004, Found. Trends Commun. Inform. Theory 1 (2004), 4, 417-528. Zbl1157.62300DOI10.1561/0100000004
- I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures., Theory Probab. Appl. 5 (1960), 285-301. Zbl0100.34004MR0133152
- A. Golan, 10.1016/S0304-4076(01)00110-5, J. Econometrics 107 (2002), 1-15. Zbl1088.62519MR1889949DOI10.1016/S0304-4076(01)00110-5
- A. Gretton, L. Györfi, Consistent nonparametric tests of independence., J. Mach. Learn. Res. 11 (2010), 1391-1423. Zbl1242.62033MR2645456
- P. Harremoes, I. Vajda, 10.1109/TIT.2007.911155, IEEE Trans. Inform. Theory 54 (2008), 321-331. MR2446756DOI10.1109/TIT.2007.911155
- P. Harremoes, I. Vajda, On Bahadur efficiency of power divergence statistics., Preprint arXiv:1002.1493v1 [math.ST] (2010).
- T. Hobza, L. Pardo, D. Morales, 10.1016/j.stamet.2009.03.001, Statist. Methodol. 6 (2009), 424-436. MR2751084DOI10.1016/j.stamet.2009.03.001
- F. Liese, K.-J. Miescke, Statistical Decision Theory., Springer-Verlag, New York 2008. Zbl1154.62008MR2421720
- F. Liese, D. Morales, I. Vajda, 10.1109/TIT.2006.885495, IEEE Trans. Inform. Theory 52 (2006), 5599-5606. MR2300722DOI10.1109/TIT.2006.885495
- F. Liese, I. Vajda, Convex Statistical Distances., Teubner, Leipzig 1987. Zbl0656.62004MR0926905
- F. Liese, I. Vajda, 10.1109/TIT.2006.881731, IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR2300826DOI10.1109/TIT.2006.881731
- E. Maasoumi, 10.1080/07474939308800260, Econometrics Rev. 12 (1993), 2, 137-181. Zbl0769.62003MR1222574DOI10.1080/07474939308800260
- D. Morales, I. Vajda, Generalized information criteria for optimal Bayes decisions., Research Report No. 2274, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2010.
- D. B. Nelson, K. Ramaswamy, 10.1093/rfs/3.3.393, Rev. Financ. Stud. 3 (1990), 393-430. DOI10.1093/rfs/3.3.393
- L. Pardo, Statistical Inference Based on Divergence Measures., Chapman & Hall, Boca Raton 2005. Zbl1118.62008MR2183173
- M. C. Pardo, 10.1007/s00184-009-0275-y, Metrika 73 (2011), 231-253. Zbl1206.62131MR2769272DOI10.1007/s00184-009-0275-y
- T. R. C. Read, N. A. C. Cressie, Goodness-of-Fit Statistics for Discrete Multivariate Data., Springer-Verlag, New York 1988. Zbl0663.62065MR0955054
- H. Strasser, Mathematical Theory of Statistics., De Gruyter, Berlin 1985. Zbl0594.62017MR0812467
- W. Stummer, Exponentials, Diffusions, Finance, Entropy and Information., Shaker, Aachen 2004. Zbl1140.91013
- W. Stummer, I. Vajda, 10.1016/j.jeconom.2005.10.001, J. Econometrics 137 (2007), 441-471. MR2354952DOI10.1016/j.jeconom.2005.10.001
- W. Stummer, I. Vajda, 10.1080/02331880902986919, Statistics 44 (2010), 169-187. MR2674416DOI10.1080/02331880902986919
- I. Vajda, E.C. van der Meulen, Goodness-of-Fit criteria based on observations quantized by hypothetical and empirical percentiles., In: Handbook of Fitting Statistical Distributions with R (Z.A. Katrian, E.J. Dudewicz eds.), Chapman & Hall / CRC, 2010, pp. 917-994.
- I. Vajda, J. Zvárová, On generalized entropies, Bayesian decisions and statistical diversity., Kybernetika 43 (2007), 675-696. Zbl1143.94006MR2376331
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.