A fuzzy pay-off method for real option valuation.
Stochastic partial differential equations (SPDEs) whose solutions are probability-measure-valued processes are considered. Measure-valued processes of this type arise naturally as de Finetti measures of infinite exchangeable systems of particles and as the solutions for filtering problems. In particular, we consider a model of asset price determination by an infinite collection of competing traders. Each trader’s valuations of the assets are given by the solution of a stochastic differential equation,...
This paper deals with the numerical solution of nonlinear Black-Scholes equation modeling European vanilla call option pricing under transaction costs. Using an explicit finite difference scheme consistent with the partial differential equation valuation problem, a sufficient condition for the stability of the solution is given in terms of the stepsize discretization variables and the parameter measuring the transaction costs. This stability condition is linked to some properties of the numerical...
We study the pricing problem between two firms when the manufacturer’s willingness to pay (wtp) for the supplier’s good is not known by the latter. We demonstrate that it is in the interest of the manufacturer to hide this information from the supplier. The precision of the information available to the supplier modifies the rent distribution. The risk of opportunistic behaviour entails a loss of efficiency in the supply chain. The model is extended to the case of a supplier submitting offers to...
Motivated by the observation that the gain-loss criterion, while offering economically meaningful prices of contingent claims, is sensitive to the reference measure governing the underlying stock price process (a situation referred to as ambiguity of measure), we propose a gain-loss pricing model robust to shifts in the reference measure. Using a dual representation property of polyhedral risk measures we obtain a one-step, gain-loss criterion based theorem of asset pricing under ambiguity of...
The indifference valuation problem in incomplete binomial models is analyzed. The model is more general than the ones studied so far, because the stochastic factor, which generates the market incompleteness, may affect the transition propabilities and/or the values of the traded asset as well as the claim’s payoff. Two pricing algorithms are constructed which use, respectively, the minimal martingale and the minimal entropy measures. We study in detail the interplay among the different kinds of...
We study Bayesian decision making based on observations () of the discrete-time price dynamics of a financial asset, when the hypothesis a special -period binomial model and the alternative is a different -period binomial model. As the observation gaps tend to zero (i. e. ), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and...
JEL Classification: G21, L13.The paper builds an oligopoly model of a debit card network. It examines the competition between debit card issuers. We show that there is an optimal pricing for the debit card network, which maximizes all issuer’s revenues. The paper also shows that establishing a link between debit card networks averages the costs provided that there is no growth in the customer’s usage of the networks, resulting from the link.
We find a probabilistic representation of the Laplace transform of some special functional of geometric Brownian motion using squared Bessel and radial Ornstein-Uhlenbeck processes. Knowing the transition density functions of these processes, we obtain closed formulas for certain expectations of the relevant functional. Among other things we compute the Laplace transform of the exponent of the T transforms of Brownian motion with drift used by Donati-Martin, Matsumoto, and Yor in a variety of identities...
We develop a class of non-life reserving models using a stable-1/2 random bridge to simulate the accumulation of paid claims, allowing for an essentially arbitrary choice of a priori distribution for the ultimate loss. Taking an information-based approach to the reserving problem, we derive the process of the conditional distribution of the ultimate loss. The "best-estimate ultimate loss process" is given by the conditional expectation of the ultimate loss. We derive explicit expressions for the...