-Laplacian BVPs with linear bounded operator conditions
Kamal Bachouche; Smaïl Djebali; Toufik Moussaoui
Archivum Mathematicum (2012)
- Volume: 048, Issue: 2, page 121-137
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBachouche, Kamal, Djebali, Smaïl, and Moussaoui, Toufik. "$\phi $-Laplacian BVPs with linear bounded operator conditions." Archivum Mathematicum 048.2 (2012): 121-137. <http://eudml.org/doc/246448>.
@article{Bachouche2012,
abstract = {The aim of this paper is to present new existence results for $\phi $-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel’skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.},
author = {Bachouche, Kamal, Djebali, Smaïl, Moussaoui, Toufik},
journal = {Archivum Mathematicum},
keywords = {$\phi $-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem; -Laplacian; boundary value problem; Krasnoselskii's fixed point theorem; Schauder's fixed point theorem},
language = {eng},
number = {2},
pages = {121-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\phi $-Laplacian BVPs with linear bounded operator conditions},
url = {http://eudml.org/doc/246448},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Bachouche, Kamal
AU - Djebali, Smaïl
AU - Moussaoui, Toufik
TI - $\phi $-Laplacian BVPs with linear bounded operator conditions
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 2
SP - 121
EP - 137
AB - The aim of this paper is to present new existence results for $\phi $-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel’skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.
LA - eng
KW - $\phi $-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem; -Laplacian; boundary value problem; Krasnoselskii's fixed point theorem; Schauder's fixed point theorem
UR - http://eudml.org/doc/246448
ER -
References
top- Bachouche, K., Djebali, S., Moussaoui, T., One-dimensional Dirichlet Laplacian BVPs with first order derivative dependence, Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. (2011) MR2911979
- Benmezai, A., Djebali, S., Moussaoui, T., Multiple positive solutions for –Laplacian BVPs, Panamer. Math. J. 17 (3) (2007), 53–73. (2007) MR2335473
- Benmezai, A., Djebali, S., Moussaoui, T., Positive solutions for –Laplacian Dirichlet BVPs, Fixed Point Theory 8 (2) (2007), 167–186. (2007) Zbl1156.34015MR2358986
- Benmezai, A., Djebali, S., Moussaoui, T., Existence results for one-dimensional Dirichlet –Laplacian BVPs: a fixed point approach, Dynam. Systems Appl. 17 (2008), 149–166. (2008) MR2433897
- Deimling, K., Nonlinear Functional Analysis, Springer–Verlag, Berlin, Heidelberg, 1985. (1985) Zbl0559.47040MR0787404
- Feng, H., Ge, W., Jiang, M., 10.1016/j.na.2007.01.052, Nonlinear Anal. 68 (8) (2008), 2269–2279. (2008) MR2398649DOI10.1016/j.na.2007.01.052
- Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) Zbl0661.47045MR0959889
- Ji, D., Feng, M., Ge, W., 10.1016/j.amc.2007.06.028, Appl. Math. Comput. 196 (2008), 511–520. (2008) Zbl1138.34014MR2388707DOI10.1016/j.amc.2007.06.028
- Karakostas, G. L., Positive solutions for the –Laplacian when is a sup–multiplicative–like function, Electron. J. Differential Equations 68 (2004), 1–12. (2004) Zbl1057.34010MR2057655
- Karakostas, G. L., Triple positive solutions for the –Laplacian when is a sup–multiplicative–like function, Electron. J. Differential Equations 69 (2004), 1–12. (2004) Zbl1057.34010MR2057656
- Karakostas, G. L., 10.1016/j.amc.2009.05.022, Appl. Math. Comput. 215 (2009), 514–523. (2009) MR2561508DOI10.1016/j.amc.2009.05.022
- Krasnosel’skii, M. A., Positive Solutions of Operator Equations, Noordhoff, Groningen, The Netherlands, 1964. (1964)
- Smart, D. R., Fixed Point Theorems, cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. (1974) Zbl0297.47042MR0467717
- Wang, Y., Ge, W., 10.1016/j.na.2006.06.011, Nonlinear Anal. 67 (2) (2007), 476–485. (2007) Zbl1130.34009MR2317182DOI10.1016/j.na.2006.06.011
- Wang, Y., Ge, W., 10.1016/j.camwa.2006.10.038, Comput. Math. Appl. 54 (6) (2007), 793–807. (2007) Zbl1134.34017MR2348264DOI10.1016/j.camwa.2006.10.038
- Yan, B., Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals, Electron. J. Differential Equations 74 (2006), 1–25. (2006) Zbl1117.34031MR2240822
- Zeidler, E., Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems, Springer–Verlag, New York, 1986. (1986) MR0816732
- Zhang, Z., Wang, J., 10.1016/j.jmaa.2004.03.057, J. Math. Anal. Appl. 295 (2004), 502–512. (2004) Zbl1056.34018MR2072028DOI10.1016/j.jmaa.2004.03.057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.