φ -Laplacian BVPs with linear bounded operator conditions

Kamal Bachouche; Smaïl Djebali; Toufik Moussaoui

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 2, page 121-137
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to present new existence results for φ -Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel’skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.

How to cite

top

Bachouche, Kamal, Djebali, Smaïl, and Moussaoui, Toufik. "$\phi $-Laplacian BVPs with linear bounded operator conditions." Archivum Mathematicum 048.2 (2012): 121-137. <http://eudml.org/doc/246448>.

@article{Bachouche2012,
abstract = {The aim of this paper is to present new existence results for $\phi $-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel’skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.},
author = {Bachouche, Kamal, Djebali, Smaïl, Moussaoui, Toufik},
journal = {Archivum Mathematicum},
keywords = {$\phi $-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem; -Laplacian; boundary value problem; Krasnoselskii's fixed point theorem; Schauder's fixed point theorem},
language = {eng},
number = {2},
pages = {121-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\phi $-Laplacian BVPs with linear bounded operator conditions},
url = {http://eudml.org/doc/246448},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Bachouche, Kamal
AU - Djebali, Smaïl
AU - Moussaoui, Toufik
TI - $\phi $-Laplacian BVPs with linear bounded operator conditions
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 2
SP - 121
EP - 137
AB - The aim of this paper is to present new existence results for $\phi $-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel’skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.
LA - eng
KW - $\phi $-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem; -Laplacian; boundary value problem; Krasnoselskii's fixed point theorem; Schauder's fixed point theorem
UR - http://eudml.org/doc/246448
ER -

References

top
  1. Bachouche, K., Djebali, S., Moussaoui, T., One-dimensional Dirichlet φ - - Laplacian BVPs with first order derivative dependence, Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. (2011) MR2911979
  2. Benmezai, A., Djebali, S., Moussaoui, T., Multiple positive solutions for φ –Laplacian BVPs, Panamer. Math. J. 17 (3) (2007), 53–73. (2007) MR2335473
  3. Benmezai, A., Djebali, S., Moussaoui, T., Positive solutions for φ –Laplacian Dirichlet BVPs, Fixed Point Theory 8 (2) (2007), 167–186. (2007) Zbl1156.34015MR2358986
  4. Benmezai, A., Djebali, S., Moussaoui, T., Existence results for one-dimensional Dirichlet φ –Laplacian BVPs: a fixed point approach, Dynam. Systems Appl. 17 (2008), 149–166. (2008) MR2433897
  5. Deimling, K., Nonlinear Functional Analysis, Springer–Verlag, Berlin, Heidelberg, 1985. (1985) Zbl0559.47040MR0787404
  6. Feng, H., Ge, W., Jiang, M., 10.1016/j.na.2007.01.052, Nonlinear Anal. 68 (8) (2008), 2269–2279. (2008) MR2398649DOI10.1016/j.na.2007.01.052
  7. Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179
  8. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) Zbl0661.47045MR0959889
  9. Ji, D., Feng, M., Ge, W., 10.1016/j.amc.2007.06.028, Appl. Math. Comput. 196 (2008), 511–520. (2008) Zbl1138.34014MR2388707DOI10.1016/j.amc.2007.06.028
  10. Karakostas, G. L., Positive solutions for the Φ –Laplacian when Φ is a sup–multiplicative–like function, Electron. J. Differential Equations 68 (2004), 1–12. (2004) Zbl1057.34010MR2057655
  11. Karakostas, G. L., Triple positive solutions for the Φ –Laplacian when Φ is a sup–multiplicative–like function, Electron. J. Differential Equations 69 (2004), 1–12. (2004) Zbl1057.34010MR2057656
  12. Karakostas, G. L., 10.1016/j.amc.2009.05.022, Appl. Math. Comput. 215 (2009), 514–523. (2009) MR2561508DOI10.1016/j.amc.2009.05.022
  13. Krasnosel’skii, M. A., Positive Solutions of Operator Equations, Noordhoff, Groningen, The Netherlands, 1964. (1964) 
  14. Smart, D. R., Fixed Point Theorems, cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. (1974) Zbl0297.47042MR0467717
  15. Wang, Y., Ge, W., 10.1016/j.na.2006.06.011, Nonlinear Anal. 67 (2) (2007), 476–485. (2007) Zbl1130.34009MR2317182DOI10.1016/j.na.2006.06.011
  16. Wang, Y., Ge, W., 10.1016/j.camwa.2006.10.038, Comput. Math. Appl. 54 (6) (2007), 793–807. (2007) Zbl1134.34017MR2348264DOI10.1016/j.camwa.2006.10.038
  17. Yan, B., Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals, Electron. J. Differential Equations 74 (2006), 1–25. (2006) Zbl1117.34031MR2240822
  18. Zeidler, E., Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems, Springer–Verlag, New York, 1986. (1986) MR0816732
  19. Zhang, Z., Wang, J., 10.1016/j.jmaa.2004.03.057, J. Math. Anal. Appl. 295 (2004), 502–512. (2004) Zbl1056.34018MR2072028DOI10.1016/j.jmaa.2004.03.057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.