A generalization of amenability and inner amenability of groups
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 729-742
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGhaffari, Ali. "A generalization of amenability and inner amenability of groups." Czechoslovak Mathematical Journal 62.3 (2012): 729-742. <http://eudml.org/doc/246466>.
@article{Ghaffari2012,
abstract = {Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.},
author = {Ghaffari, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {amenability; Banach algebra; inner amenability; locally compact group; amenability; Banach algebra; inner amenability; locally compact group},
language = {eng},
number = {3},
pages = {729-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization of amenability and inner amenability of groups},
url = {http://eudml.org/doc/246466},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Ghaffari, Ali
TI - A generalization of amenability and inner amenability of groups
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 729
EP - 742
AB - Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.
LA - eng
KW - amenability; Banach algebra; inner amenability; locally compact group; amenability; Banach algebra; inner amenability; locally compact group
UR - http://eudml.org/doc/246466
ER -
References
top- Bami, M. L., Mohammadzadeh, B., Inner amenability of locally compact groups and their algebras, Stud. Sci. Math. Hung. 44 (2007), 265-274. (2007) Zbl1174.43001MR2325523
- Bratteli, O., Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics I, Springer New York-Heidelberg-Berlin (1979). (1979) MR0611508
- Dales, H. G., Banach Algebras and Automatic Continuity. London Math. Soc. Monographs, Clarendon Press Oxford (2000). (2000) MR1816726
- Dunford, N., Schwartz, J. T., Linear Operators. Part I, Interscience New York (1958). (1958)
- Edwards, R. E., Functional Analysis, Holt, Rinehart and Winston New York (1965). (1965) Zbl0182.16101MR0221256
- Effros, E. G., Property and inner amenability, Proc. Am. Math. Soc. 47 (1975), 483-486. (1975) Zbl0321.22011MR0355626
- Eymard, P., 10.24033/bsmf.1607, Bull. Soc. Math. Fr. 92 (1964), 181-236 French. (1964) Zbl0169.46403MR0228628DOI10.24033/bsmf.1607
- Folland, G. B., A Course in Abstract Harmonic Analysis, CRC Press Boca Raton (1995). (1995) Zbl0857.43001MR1397028
- Ghaffari, A., 10.1007/s10114-010-9498-0, Acta Math. Sin., Engl. Ser. 26 (2010), 2313-2324. (2010) Zbl1219.43001MR2737302DOI10.1007/s10114-010-9498-0
- Ghaffari, A., Structural properties of inner amenable discrete groups, Bull. Iran. Math. Soc. 33 (2007), 25-35. (2007) Zbl1155.22006MR2338797
- Hewitt, E., Ross, K. A., Abstract Harmonic Analysis, Springer Berlin (1963) (1970) Zbl0213.40103
- Herz, C., 10.5802/aif.473, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. (1973) Zbl0257.43007MR0355482DOI10.5802/aif.473
- Lau, A. T.-M., 10.4064/fm-118-3-161-175, Fundam. Math. 118 (1983), 161-175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
- Lau, A. T.-M., Paterson, A. L. T., 10.1090/S0002-9947-1991-1010885-5, Trans. Am. Math. Soc. 325 (1991), 155-169. (1991) Zbl0718.43002MR1010885DOI10.1090/S0002-9947-1991-1010885-5
- Lau, A. T.-M., Paterson, A. L. T., Operator theoretic characterizations of [IN]-groups and inner amenability, Proc. Am. Math. Soc. 102 (1988), 893-897. (1988) Zbl0644.43002MR0934862
- Li, B., Pier, J.-P., Amenability with respect to a closed subgroup of a product group, Adv. Math. (Beijing) 21 (1992), 97-112. (1992) Zbl0763.43002MR1153929
- Memarbashi, R., Riazi, A., Topological inner invariant means, Stud. Sci. Math. Hung. 40 (2003), 293-299. (2003) Zbl1047.43001MR2036960
- Paterson, A. L. T., Amenability. Math. Survey and Monographs Vol. 29, Am. Math. Soc. Providence (1988). (1988) MR0961261
- Pier, J.-P., Amenable Banach Algebras. Pitman Research Notes in Mathematics Series, Vol. 172, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1988). (1988) MR0942218
- Pier, J.-P., Amenable Locally Compact Groups, John Wiley & Sons New York (1984). (1984) Zbl0621.43001MR0767264
- Rudin, W., Functional Analysis, 2nd ed, McGraw Hill New York (1991). (1991) Zbl0867.46001MR1157815
- Stokke, R., 10.1215/ijm/1258136179, Ill. J. Math. 48 (2004), 151-170. (2004) Zbl1037.43004MR2048220DOI10.1215/ijm/1258136179
- Yuan, C. K., 10.1016/0022-247X(91)90142-M, J. Math. Anal. Appl. 157 (1991), 166-178. (1991) Zbl0744.43004MR1109449DOI10.1016/0022-247X(91)90142-M
- Yuan, C. K., 10.1007/BF02582912, Acta Math. Sin., New Ser. 8 (1992), 236-242. (1992) Zbl0766.43003MR1192624DOI10.1007/BF02582912
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.