A generalization of amenability and inner amenability of groups

Ali Ghaffari

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 729-742
  • ISSN: 0011-4642

Abstract

top
Let G be a locally compact group. We continue our work [A. Ghaffari: Γ -amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of Γ -amenability of a locally compact group G defined with respect to a closed subgroup Γ of G × G . In this paper, among other things, we introduce and study a closed subspace A Γ p ( G ) of L ( Γ ) and then characterize the Γ -amenability of G using A Γ p ( G ) . Various necessary and sufficient conditions are found for a locally compact group to possess a Γ -invariant mean.

How to cite

top

Ghaffari, Ali. "A generalization of amenability and inner amenability of groups." Czechoslovak Mathematical Journal 62.3 (2012): 729-742. <http://eudml.org/doc/246466>.

@article{Ghaffari2012,
abstract = {Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.},
author = {Ghaffari, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {amenability; Banach algebra; inner amenability; locally compact group; amenability; Banach algebra; inner amenability; locally compact group},
language = {eng},
number = {3},
pages = {729-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization of amenability and inner amenability of groups},
url = {http://eudml.org/doc/246466},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Ghaffari, Ali
TI - A generalization of amenability and inner amenability of groups
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 729
EP - 742
AB - Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.
LA - eng
KW - amenability; Banach algebra; inner amenability; locally compact group; amenability; Banach algebra; inner amenability; locally compact group
UR - http://eudml.org/doc/246466
ER -

References

top
  1. Bami, M. L., Mohammadzadeh, B., Inner amenability of locally compact groups and their algebras, Stud. Sci. Math. Hung. 44 (2007), 265-274. (2007) Zbl1174.43001MR2325523
  2. Bratteli, O., Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics I, Springer New York-Heidelberg-Berlin (1979). (1979) MR0611508
  3. Dales, H. G., Banach Algebras and Automatic Continuity. London Math. Soc. Monographs, Clarendon Press Oxford (2000). (2000) MR1816726
  4. Dunford, N., Schwartz, J. T., Linear Operators. Part I, Interscience New York (1958). (1958) 
  5. Edwards, R. E., Functional Analysis, Holt, Rinehart and Winston New York (1965). (1965) Zbl0182.16101MR0221256
  6. Effros, E. G., Property Γ and inner amenability, Proc. Am. Math. Soc. 47 (1975), 483-486. (1975) Zbl0321.22011MR0355626
  7. Eymard, P., 10.24033/bsmf.1607, Bull. Soc. Math. Fr. 92 (1964), 181-236 French. (1964) Zbl0169.46403MR0228628DOI10.24033/bsmf.1607
  8. Folland, G. B., A Course in Abstract Harmonic Analysis, CRC Press Boca Raton (1995). (1995) Zbl0857.43001MR1397028
  9. Ghaffari, A., 10.1007/s10114-010-9498-0, Acta Math. Sin., Engl. Ser. 26 (2010), 2313-2324. (2010) Zbl1219.43001MR2737302DOI10.1007/s10114-010-9498-0
  10. Ghaffari, A., Structural properties of inner amenable discrete groups, Bull. Iran. Math. Soc. 33 (2007), 25-35. (2007) Zbl1155.22006MR2338797
  11. Hewitt, E., Ross, K. A., Abstract Harmonic Analysis, Springer Berlin (1963) (1970) Zbl0213.40103
  12. Herz, C., 10.5802/aif.473, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. (1973) Zbl0257.43007MR0355482DOI10.5802/aif.473
  13. Lau, A. T.-M., 10.4064/fm-118-3-161-175, Fundam. Math. 118 (1983), 161-175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
  14. Lau, A. T.-M., Paterson, A. L. T., 10.1090/S0002-9947-1991-1010885-5, Trans. Am. Math. Soc. 325 (1991), 155-169. (1991) Zbl0718.43002MR1010885DOI10.1090/S0002-9947-1991-1010885-5
  15. Lau, A. T.-M., Paterson, A. L. T., Operator theoretic characterizations of [IN]-groups and inner amenability, Proc. Am. Math. Soc. 102 (1988), 893-897. (1988) Zbl0644.43002MR0934862
  16. Li, B., Pier, J.-P., Amenability with respect to a closed subgroup of a product group, Adv. Math. (Beijing) 21 (1992), 97-112. (1992) Zbl0763.43002MR1153929
  17. Memarbashi, R., Riazi, A., Topological inner invariant means, Stud. Sci. Math. Hung. 40 (2003), 293-299. (2003) Zbl1047.43001MR2036960
  18. Paterson, A. L. T., Amenability. Math. Survey and Monographs Vol. 29, Am. Math. Soc. Providence (1988). (1988) MR0961261
  19. Pier, J.-P., Amenable Banach Algebras. Pitman Research Notes in Mathematics Series, Vol. 172, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1988). (1988) MR0942218
  20. Pier, J.-P., Amenable Locally Compact Groups, John Wiley & Sons New York (1984). (1984) Zbl0621.43001MR0767264
  21. Rudin, W., Functional Analysis, 2nd ed, McGraw Hill New York (1991). (1991) Zbl0867.46001MR1157815
  22. Stokke, R., 10.1215/ijm/1258136179, Ill. J. Math. 48 (2004), 151-170. (2004) Zbl1037.43004MR2048220DOI10.1215/ijm/1258136179
  23. Yuan, C. K., 10.1016/0022-247X(91)90142-M, J. Math. Anal. Appl. 157 (1991), 166-178. (1991) Zbl0744.43004MR1109449DOI10.1016/0022-247X(91)90142-M
  24. Yuan, C. K., 10.1007/BF02582912, Acta Math. Sin., New Ser. 8 (1992), 236-242. (1992) Zbl0766.43003MR1192624DOI10.1007/BF02582912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.