Mathematical models of tumor growth systems

Takashi Suzuki

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 2, page 201-218
  • ISSN: 0862-7959

Abstract

top
We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.

How to cite

top

Suzuki, Takashi. "Mathematical models of tumor growth systems." Mathematica Bohemica 137.2 (2012): 201-218. <http://eudml.org/doc/246499>.

@article{Suzuki2012,
abstract = {We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.},
author = {Suzuki, Takashi},
journal = {Mathematica Bohemica},
keywords = {tumor growth modeling; mean field theory; parabolic-ODE system; global-in-time existence; chemotaxis; tumor growth modelling; mean field theory; parabolic-ODE system; global in time existence; chemotaxis},
language = {eng},
number = {2},
pages = {201-218},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical models of tumor growth systems},
url = {http://eudml.org/doc/246499},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Suzuki, Takashi
TI - Mathematical models of tumor growth systems
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 201
EP - 218
AB - We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.
LA - eng
KW - tumor growth modeling; mean field theory; parabolic-ODE system; global-in-time existence; chemotaxis; tumor growth modelling; mean field theory; parabolic-ODE system; global in time existence; chemotaxis
UR - http://eudml.org/doc/246499
ER -

References

top
  1. Anderson, A. R. A., Chaplain, M. A. J., 10.1006/bulm.1998.0042, Bull. Math. Biol. 60 (1998), 857-899. (1998) DOI10.1006/bulm.1998.0042
  2. Anderson, A. R. A., Pitcairn, A. W., Application of the hybrid discrete-continuum technique, Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, Birkhäuser, Basel, 2003, pp. 261-279. 
  3. Anderson, A. R. A., Quaranta, V., Integrative mathematical oncology, Cancer 8 (2008), 227-234. (2008) 
  4. Anderson, A. R. A., Weaver, A. M., Cummings, R. T., Quaranta, V., 10.1016/j.cell.2006.09.042, Cell 127 (2006), 905-915. (2006) DOI10.1016/j.cell.2006.09.042
  5. Biler, P., Stańczy, R., Mean field models for self-gravitating particles, Folia Matematica 13 (2006), 3-19. (2006) Zbl1181.35290MR2675439
  6. Childress, S., Percus, J. K., 10.1016/0025-5564(81)90055-9, Math. Biosci. 56 (1981), 217-237. (1981) Zbl0481.92010MR0632161DOI10.1016/0025-5564(81)90055-9
  7. Corrias, L., Perthame, B., Zaag, H., 10.1016/S1631-073X(02)00008-0, C.R. Acad. Sci. Paris, Ser. I 336 (2003), 141-146. (2003) MR1969568DOI10.1016/S1631-073X(02)00008-0
  8. Corrias, L., Perthame, B., Zaag, H., 10.1007/s00032-003-0026-x, Milan J. Math. 72 (2004), 1-28. (2004) MR2099126DOI10.1007/s00032-003-0026-x
  9. Fontelos, M. A., Friedman, A., Hu, B., 10.1137/S0036141001385046, SIAM J. Math. Anal. 33 (2002), 1330-1355. (2002) MR1920634DOI10.1137/S0036141001385046
  10. Friedman, A., Tello, J. I., 10.1016/S0022-247X(02)00147-6, J. Math. Anal. Appl. 272 (2002), 138-163. (2002) Zbl1025.35005MR1930708DOI10.1016/S0022-247X(02)00147-6
  11. Ichikawa, K., Rouzimaimaiti, M., Suzuki, T., 10.3934/dcdss/2011.5, Discrete and Continuous Dynamical Systems S 5 (2012), 115-126 doi:10.3934/dcdss/2011.5. (2012) MR2836554DOI10.3934/dcdss/2011.5
  12. Jäger, W., Luckhaus, S., 10.1090/S0002-9947-1992-1046835-6, Trans. Amer. Math. Soc. 329 (1992), 819-824. (1992) Zbl0746.35002MR1046835DOI10.1090/S0002-9947-1992-1046835-6
  13. Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306DOI10.1016/0022-5193(70)90092-5
  14. Kubo, A., Hoshino, H., Suzuki, T., Asymptotic behavior of soltuions to a parabolic ODE system, Proceedings of the 5th East Asia PDE Conference H. J. Choe, C.-S. Lin, T. Suzuki, J. Wei Gakkotosho, Tokyo (2005), 121-136. (2005) 
  15. Kubo, A., Saito, N., Suzuki, T., Hoshino, H., Mathematical modelds of tumor angiogenesis and simulations, Kokyuroku RIMS 1499 (2006), 135-146. (2006) MR2320335
  16. Kubo, A., Suzuki, T., Asymptotic behavior of the solution to a parabolic ODE system modeling tumor growth, Differ. Integral Equ. 17 (2004), 721-736. (2004) MR2074683
  17. Kubo, A., Suzuki, T., 10.1016/j.cam.2006.04.027, J. Comp. Appl. Math. 204 (2007), 48-55. (2007) MR2320335DOI10.1016/j.cam.2006.04.027
  18. Levine, H. A., Sleeman, B. D., 10.1137/S0036139995291106, SIAM J. Appl. Math. 57 (1997), 683-730. (1997) MR1450846DOI10.1137/S0036139995291106
  19. Lions, J. L., Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod-Gauthier-Villars, Paris (1969), French. (1969) MR0259693
  20. Murray, J. D., Mathematical Biology, I: An Introduction, third edition, Springer, New York (2001). (2001) MR1908418
  21. Nanjundiah, V., 10.1016/0022-5193(73)90149-5, J. Theor. Biol. 42 (1973), 63-105. (1973) DOI10.1016/0022-5193(73)90149-5
  22. Okubo, A., Diffusion and Ecological Problems---Modern Perspectives, second edition, Springer, New York (2001). (2001) MR1895041
  23. Othmer, H. G., Dumber, S. R., Alt, W., 10.1007/BF00277392, J. Math. Biol. 6 (1988), 263-298. (1988) MR0949094DOI10.1007/BF00277392
  24. Othmer, H. G., Stevens, A., 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044-1081. (1997) Zbl0990.35128MR1462051DOI10.1137/S0036139995288976
  25. Rascle, M., 10.1016/0022-0396(79)90043-3, J. Differ. Equations 32 (1979), 420-453. (1979) Zbl0389.45013MR0535172DOI10.1016/0022-0396(79)90043-3
  26. Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J. P., 10.1016/j.jtbi.2006.07.013, J. Theor. Biol. 243 (2006), 532-541. (2006) MR2306343DOI10.1016/j.jtbi.2006.07.013
  27. Senba, T., Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis, Adv. Math. Sci. Appl. 7 (1997), 79-92. (1997) Zbl0877.35022MR1454659
  28. Sleeman, B. D., Levine, H. A., 10.1002/mma.212, Math. Meth. Appl. Sci. 24 (2001), 405-426. (2001) Zbl0990.35014MR1821934DOI10.1002/mma.212
  29. Suzuki, T., Free Energy and Self-Interacting Particles, Birkhäuser, Boston (2005). (2005) Zbl1082.35006MR2135150
  30. Suzuki, T., Mean Field Theories and Dual Variation, Atlantis Press, Amsterdam (2008). (2008) Zbl1247.35001MR2510744
  31. Suzuki, T., Takahashi, R., Global in time solution to a class of tumour growth systems, Adv. Math. Sci. Appl. 19 (2009), 503-524. (2009) MR2605731
  32. Yang, Y., Chen, H., Liu, W., 10.1137/S0036141000337796, SIAM J. Math. Anal. 33 (1997), 763-785. (1997) MR1884721DOI10.1137/S0036141000337796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.