Mathematical models of tumor growth systems
Mathematica Bohemica (2012)
- Volume: 137, Issue: 2, page 201-218
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSuzuki, Takashi. "Mathematical models of tumor growth systems." Mathematica Bohemica 137.2 (2012): 201-218. <http://eudml.org/doc/246499>.
@article{Suzuki2012,
abstract = {We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.},
author = {Suzuki, Takashi},
journal = {Mathematica Bohemica},
keywords = {tumor growth modeling; mean field theory; parabolic-ODE system; global-in-time existence; chemotaxis; tumor growth modelling; mean field theory; parabolic-ODE system; global in time existence; chemotaxis},
language = {eng},
number = {2},
pages = {201-218},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical models of tumor growth systems},
url = {http://eudml.org/doc/246499},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Suzuki, Takashi
TI - Mathematical models of tumor growth systems
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 201
EP - 218
AB - We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.
LA - eng
KW - tumor growth modeling; mean field theory; parabolic-ODE system; global-in-time existence; chemotaxis; tumor growth modelling; mean field theory; parabolic-ODE system; global in time existence; chemotaxis
UR - http://eudml.org/doc/246499
ER -
References
top- Anderson, A. R. A., Chaplain, M. A. J., 10.1006/bulm.1998.0042, Bull. Math. Biol. 60 (1998), 857-899. (1998) DOI10.1006/bulm.1998.0042
- Anderson, A. R. A., Pitcairn, A. W., Application of the hybrid discrete-continuum technique, Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, Birkhäuser, Basel, 2003, pp. 261-279.
- Anderson, A. R. A., Quaranta, V., Integrative mathematical oncology, Cancer 8 (2008), 227-234. (2008)
- Anderson, A. R. A., Weaver, A. M., Cummings, R. T., Quaranta, V., 10.1016/j.cell.2006.09.042, Cell 127 (2006), 905-915. (2006) DOI10.1016/j.cell.2006.09.042
- Biler, P., Stańczy, R., Mean field models for self-gravitating particles, Folia Matematica 13 (2006), 3-19. (2006) Zbl1181.35290MR2675439
- Childress, S., Percus, J. K., 10.1016/0025-5564(81)90055-9, Math. Biosci. 56 (1981), 217-237. (1981) Zbl0481.92010MR0632161DOI10.1016/0025-5564(81)90055-9
- Corrias, L., Perthame, B., Zaag, H., 10.1016/S1631-073X(02)00008-0, C.R. Acad. Sci. Paris, Ser. I 336 (2003), 141-146. (2003) MR1969568DOI10.1016/S1631-073X(02)00008-0
- Corrias, L., Perthame, B., Zaag, H., 10.1007/s00032-003-0026-x, Milan J. Math. 72 (2004), 1-28. (2004) MR2099126DOI10.1007/s00032-003-0026-x
- Fontelos, M. A., Friedman, A., Hu, B., 10.1137/S0036141001385046, SIAM J. Math. Anal. 33 (2002), 1330-1355. (2002) MR1920634DOI10.1137/S0036141001385046
- Friedman, A., Tello, J. I., 10.1016/S0022-247X(02)00147-6, J. Math. Anal. Appl. 272 (2002), 138-163. (2002) Zbl1025.35005MR1930708DOI10.1016/S0022-247X(02)00147-6
- Ichikawa, K., Rouzimaimaiti, M., Suzuki, T., 10.3934/dcdss/2011.5, Discrete and Continuous Dynamical Systems S 5 (2012), 115-126 doi:10.3934/dcdss/2011.5. (2012) MR2836554DOI10.3934/dcdss/2011.5
- Jäger, W., Luckhaus, S., 10.1090/S0002-9947-1992-1046835-6, Trans. Amer. Math. Soc. 329 (1992), 819-824. (1992) Zbl0746.35002MR1046835DOI10.1090/S0002-9947-1992-1046835-6
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306DOI10.1016/0022-5193(70)90092-5
- Kubo, A., Hoshino, H., Suzuki, T., Asymptotic behavior of soltuions to a parabolic ODE system, Proceedings of the 5th East Asia PDE Conference H. J. Choe, C.-S. Lin, T. Suzuki, J. Wei Gakkotosho, Tokyo (2005), 121-136. (2005)
- Kubo, A., Saito, N., Suzuki, T., Hoshino, H., Mathematical modelds of tumor angiogenesis and simulations, Kokyuroku RIMS 1499 (2006), 135-146. (2006) MR2320335
- Kubo, A., Suzuki, T., Asymptotic behavior of the solution to a parabolic ODE system modeling tumor growth, Differ. Integral Equ. 17 (2004), 721-736. (2004) MR2074683
- Kubo, A., Suzuki, T., 10.1016/j.cam.2006.04.027, J. Comp. Appl. Math. 204 (2007), 48-55. (2007) MR2320335DOI10.1016/j.cam.2006.04.027
- Levine, H. A., Sleeman, B. D., 10.1137/S0036139995291106, SIAM J. Appl. Math. 57 (1997), 683-730. (1997) MR1450846DOI10.1137/S0036139995291106
- Lions, J. L., Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod-Gauthier-Villars, Paris (1969), French. (1969) MR0259693
- Murray, J. D., Mathematical Biology, I: An Introduction, third edition, Springer, New York (2001). (2001) MR1908418
- Nanjundiah, V., 10.1016/0022-5193(73)90149-5, J. Theor. Biol. 42 (1973), 63-105. (1973) DOI10.1016/0022-5193(73)90149-5
- Okubo, A., Diffusion and Ecological Problems---Modern Perspectives, second edition, Springer, New York (2001). (2001) MR1895041
- Othmer, H. G., Dumber, S. R., Alt, W., 10.1007/BF00277392, J. Math. Biol. 6 (1988), 263-298. (1988) MR0949094DOI10.1007/BF00277392
- Othmer, H. G., Stevens, A., 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044-1081. (1997) Zbl0990.35128MR1462051DOI10.1137/S0036139995288976
- Rascle, M., 10.1016/0022-0396(79)90043-3, J. Differ. Equations 32 (1979), 420-453. (1979) Zbl0389.45013MR0535172DOI10.1016/0022-0396(79)90043-3
- Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J. P., 10.1016/j.jtbi.2006.07.013, J. Theor. Biol. 243 (2006), 532-541. (2006) MR2306343DOI10.1016/j.jtbi.2006.07.013
- Senba, T., Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis, Adv. Math. Sci. Appl. 7 (1997), 79-92. (1997) Zbl0877.35022MR1454659
- Sleeman, B. D., Levine, H. A., 10.1002/mma.212, Math. Meth. Appl. Sci. 24 (2001), 405-426. (2001) Zbl0990.35014MR1821934DOI10.1002/mma.212
- Suzuki, T., Free Energy and Self-Interacting Particles, Birkhäuser, Boston (2005). (2005) Zbl1082.35006MR2135150
- Suzuki, T., Mean Field Theories and Dual Variation, Atlantis Press, Amsterdam (2008). (2008) Zbl1247.35001MR2510744
- Suzuki, T., Takahashi, R., Global in time solution to a class of tumour growth systems, Adv. Math. Sci. Appl. 19 (2009), 503-524. (2009) MR2605731
- Yang, Y., Chen, H., Liu, W., 10.1137/S0036141000337796, SIAM J. Math. Anal. 33 (1997), 763-785. (1997) MR1884721DOI10.1137/S0036141000337796
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.