Noether’s theorem for a fixed region
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 337-356
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBering, Klaus. "Noether’s theorem for a fixed region." Archivum Mathematicum 047.5 (2011): 337-356. <http://eudml.org/doc/246500>.
@article{Bering2011,
abstract = {We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.},
author = {Bering, Klaus},
journal = {Archivum Mathematicum},
keywords = {Noether’s first Theorem; Noether's first theorem},
language = {eng},
number = {5},
pages = {337-356},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Noether’s theorem for a fixed region},
url = {http://eudml.org/doc/246500},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Bering, Klaus
TI - Noether’s theorem for a fixed region
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 337
EP - 356
AB - We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
LA - eng
KW - Noether’s first Theorem; Noether's first theorem
UR - http://eudml.org/doc/246500
ER -
References
top- Arnold, V. I., Mathematical Methods of Classical Mechanics, Springer–Verlag, 1989. (1989) MR0997295
- Barnich, G., Brandt, F., Henneaux, M., 10.1016/S0370-1573(00)00049-1, Phys. Rep. 338 (2000), 439–569, arXiv:hep-th/0002245. (2000) Zbl1097.81571MR1792979DOI10.1016/S0370-1573(00)00049-1
- Bering, K., 10.1063/1.1286144, J. Math. Phys. 41 (2000), 7468–7500. (2000) Zbl0984.70020MR1788585DOI10.1063/1.1286144
- Bogoliubov, N. N., Shirkov, D. V., Introduction to the Theory of Quantized Fields, 3rd ed., John Wiley and Sons Inc., 1980. (1980) MR0579493
- de Wit, B., Smith, J., Field Theory in Particle Physics, vol. 1, North–Holland, 1986. (1986)
- Goldstein, H., Classical Mechanics, Addison–Wesley Publishing, 1980, Second edition. (1980) Zbl0491.70001MR0575343
- Hill, E. L., 10.1103/RevModPhys.23.253, Rev. Modern Phys. 23 (1951), 253–260. (1951) Zbl0044.38509MR0044959DOI10.1103/RevModPhys.23.253
- Ibragimov, N. Kh., 10.1007/BF01035741, Theoret. Mat.h Phys. 1 (1969), 267–274. (1969) MR0464998DOI10.1007/BF01035741
- José, J. V., Saletan, E. J., Classical Dynamics: A Contemporary Approach, Cambridge Univ. Press, 1998. (1998) MR1640663
- Komorowski, J., A modern version of the E. Noether’s theorems in the calculus of variations, Part I, Studia Math. 29 (1968), 261–273. (1968) MR0225205
- Noether, E., Invariante Variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066. (1918)
- Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd ed., Springer–Verlag, 1993. (1993) Zbl0785.58003MR1240056
- Polchinski, J., String Theory, vol. 1, Cambridge Univ. Press, 1998. (1998) Zbl1006.81522
- Ramond, P., Field Theory: A Modern Primer, Addison–Wesley, 1989. (1989) MR1083767
- Sarlet, W., Cantrijn, F., Generalizations of Noether’s theorem in classical mechanics, SIAM Rev. 23 (1981), 467–494. (1981) Zbl0474.70014MR0636081
- Trautman, A., Noether equations and conservation laws, Commun. Math. Phys. 6 (1967), 248–261. (1967) Zbl0172.27803MR0220470
- http://en.wikipedia.org/wiki/Noether's_theorem, tp://en.wikipedia.org/wiki/noether's_theorem.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.