The search session has expired. Please query the service again.
For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.
The aim of the present paper is twofold. On one hand, we present a classification of infinitesimal symmetries for Lagrangian systems, and the corresponding Noether theorems. The derivation of the result is made by using the symplectic techniques. Some of the results were previously obtained by other authors (see Prince (1985) for instance), and an exhaustive presentation can be found in de León and Martín de Diego (1995, 1996). Let us note that these results are true even if the Lagrangian function...
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give...
We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
Currently displaying 1 –
20 of
41