Maximal solvable extensions of filiform algebras
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 405-414
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topŠnobl, Libor. "Maximal solvable extensions of filiform algebras." Archivum Mathematicum 047.5 (2011): 405-414. <http://eudml.org/doc/246506>.
@article{Šnobl2011,
abstract = {It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.},
author = {Šnobl, Libor},
journal = {Archivum Mathematicum},
keywords = {solvable and nilpotent Lie algebras; filiform algebras; solvable Lie algebra; nilpotent Lie algebra; filiform algebra},
language = {eng},
number = {5},
pages = {405-414},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Maximal solvable extensions of filiform algebras},
url = {http://eudml.org/doc/246506},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Šnobl, Libor
TI - Maximal solvable extensions of filiform algebras
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 405
EP - 414
AB - It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.
LA - eng
KW - solvable and nilpotent Lie algebras; filiform algebras; solvable Lie algebra; nilpotent Lie algebra; filiform algebra
UR - http://eudml.org/doc/246506
ER -
References
top- Ancochea, J. M., Campoamor–Stursberg, R., Vergnolle, L. Garcia, 10.1088/0305-4470/39/6/008, J. Phys. A, Math. Theor. 39 (2006), 1339–1355. (2006) MR2202805DOI10.1088/0305-4470/39/6/008
- Campoamor–Stursberg, R., 10.1088/1751-8113/43/14/145202, J. Phys. A, Math. Theor. 43 (2010), Article ID 145202. (2010) MR2606433DOI10.1088/1751-8113/43/14/145202
- Echarte, F. J., Gómez, J. R., Núñez, J., Les algèbres de Lie filiformes complexes dérivées d’autres algèbres de Lie, [Complex filiform Lie algebras derived from other Lie algebras], Lois d'algèbres et variétés algébraiques (Colmar, 1991), Travaux en Cours 50, Hermann, Paris, 1996, pp. 45–55. (1996) MR1600982
- Goze, M., Hakimjanov, Yu., 10.1007/BF02567448, Manuscripta Math. 84 (1994), 115–224. (1994) Zbl0823.17009MR1285951DOI10.1007/BF02567448
- Goze, M., Khakimdjanov, Yu., Nilpotent Lie algebras, Kluwer Academic Publishers Group, Dordrecht, 1996. (1996) Zbl0845.17012MR1383588
- Goze, M., Khakimdjanov, Yu., Handbook of algebra, vol. 2, ch. Nilpotent and solvable Lie algebras, pp. 615–663, North-Holland, Amsterdam, 2000. (2000) MR1759608
- Šnobl, L., 10.1088/1751-8113/43/50/505202, J. Phys. A, Math. Theor. 43 (2010), 17, Article ID 505202. (2010) Zbl1231.17004MR2740380DOI10.1088/1751-8113/43/50/505202
- Šnobl, L., Winternitz, P., 10.1088/0305-4470/38/12/011, J. Phys. A, Math. Theor. 38 (2005), 2687–2700. (2005) Zbl1063.22023MR2132082DOI10.1088/0305-4470/38/12/011
- Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes, C. R. Math. Acad. Sci. Paris Sèr. A–B 267 (1968), A867–A870. (1968) Zbl0244.17010MR0245632
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.