Solvable extensions of a special class of nilpotent Lie algebras
A. Shabanskaya; Gerard Thompson
Archivum Mathematicum (2013)
- Volume: 049, Issue: 3, page 141-159
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1088/0305-4470/39/6/008, J. Phys. A 39 (6) (2006), 1339–1355. (2006) Zbl1095.17003MR2202805DOI10.1088/0305-4470/39/6/008
- Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1016/j.geomphys.2011.06.015, J. Geom. Phys. 61 (11) (2011), 2168–2186. (2011) Zbl1275.17023MR2827117DOI10.1016/j.geomphys.2011.06.015
- Campoamor–Stursberg, R., 10.1088/1751-8113/43/14/145202, J. Phys. A 43 (14) (2010), 18pp., 145202. (2010) MR2606433DOI10.1088/1751-8113/43/14/145202
- Cartan, E., Sur la structure des groupes de transformations finis et continus, Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. (1933) Zbl0007.10204
- Gantmacher, F., On the classification of real simple Lie groups, Mat. Sb. (1950), 103–112. (1950)
- Gong, M.–P., Classification of nilpotent Lie algebras of dimension , Ph.D. thesis, University of Waterloo, 1998. (1998)
- Hindeleh, F., Thompson, G., Seven dimensional Lie algebras with a four-dimensional nilradical, Algebras Groups Geom. 25 (3) (2008), 243–265. (2008) Zbl1210.17016MR2522804
- Humphreys, J., Lie algebras and their representations, Springer, 1997. (1997)
- Jacobson, N., Lie algebras, Interscience Publishers, 1962. (1962) Zbl0121.27504MR0143793
- Morozov, V. V., Classification of nilpotent Lie algebras in dimension six, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. (1958) MR0130326
- Mubarakzyanov, G. M., Classification of real Lie algebras in dimension five, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. (1963) MR0155871
- Mubarakzyanov, G. M., Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. (1963) MR0155872
- Mubarakzyanov, G. M., On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. (1963) Zbl0166.04104MR0153714
- Ndogmo, J. C., Winternitz, P., 10.1088/0305-4470/27/2/024, J. Phys. A 27 (2) (1994), 405–423. (1994) Zbl0835.17007MR1267422DOI10.1088/0305-4470/27/2/024
- Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H., 10.1063/1.522992, J. Math. Phys. 17 (1976), 986–994. (1976) Zbl0357.17004MR0404362DOI10.1063/1.522992
- Rubin, J. L., Winternitz, P., 10.1088/0305-4470/26/5/031, J. Phys. A 26 (1993), 1123–1138. (1993) Zbl0773.17004MR1211350DOI10.1088/0305-4470/26/5/031
- Seeley, C., –dimensional nilpotent Lie algebra, Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. (1993) MR1068933
- Shabanskaya, A., Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over , Ph.D. thesis, University of Toledo, 2011. (2011) MR2890187
- Shabanskaya, A., Thompson, G., Six–dimensional Lie algebras with a five–dimensional nilradical, J. Lie Theory 23 (2) (2013), 313–355. (2013) Zbl1280.17014MR3113513
- Skjelbred, T., Sund, T., Classification of nilpotent Lie algebras in dimension six, University of Oslo, 1977, preprint. (1977)
- Snobl, L., 10.1088/1751-8113/43/50/505202, J. Phys. A 43 (50) (2010), 17pp. (2010) Zbl1231.17004MR2740380DOI10.1088/1751-8113/43/50/505202
- Snobl, L., Maximal solvable extensions of filiform algebras, Arch. Math. (Brno 47 (5) (2011), 405–414. (2011) Zbl1265.17017MR2876944
- Snobl, L., Karasek, D., 10.1016/j.laa.2009.11.035, Linear Algebra Appl. 432 (7) (2010), 18/36–1850. (2010) Zbl1223.17017MR2592920DOI10.1016/j.laa.2009.11.035
- Snobl, L., Winternitz, P., 10.1088/0305-4470/38/12/011, J. Phys. A 38 (12) (2005), 2687–2700. (2005) Zbl1063.22023MR2132082DOI10.1088/0305-4470/38/12/011
- Snobl, L., Winternitz, P., All solvable extensions of a class of nilpotent Lie algebras of dimension and degree of nilpotency , J. Phys. A 2009 (2009), 16pp., 105201. (2009) Zbl1178.17009MR2485857
- Tremblay, S., Winternitz, P., 10.1088/0305-4470/31/2/033, J. Phys. A. 31 (2) (1998), 789–806. (1998) Zbl1001.17011MR1629163DOI10.1088/0305-4470/31/2/033
- Turkowski, P., 10.1063/1.528721, J. Math. Phys. 31 (6) (1990), 1344–1350. (1990) Zbl0722.17012MR1054322DOI10.1063/1.528721
- Umlauf, K. A., Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null, Ph.D. thesis, University of Leipzig, 1891. (1891)
- Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes, Bull. Math. Soc. France 78 (1970), 81–116. (1970) Zbl0244.17011MR0289609
- Wang, Y., Lin, J., Deng, S., 10.1080/00927870802174629, Comm. Algebra 36 (11) (2008), 4052–4067. (2008) Zbl1230.17007MR2460402DOI10.1080/00927870802174629