Solvable extensions of a special class of nilpotent Lie algebras

A. Shabanskaya; Gerard Thompson

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 3, page 141-159
  • ISSN: 0044-8753

Abstract

top
A pair of sequences of nilpotent Lie algebras denoted by N n , 11 and N n , 19 are introduced. Here n denotes the dimension of the algebras that are defined for n 6 ; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of N n , 11 and N n , 19 all possible solvable extensions are constructed so that N n , 11 and N n , 19 serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.

How to cite

top

Shabanskaya, A., and Thompson, Gerard. "Solvable extensions of a special class of nilpotent Lie algebras." Archivum Mathematicum 049.3 (2013): 141-159. <http://eudml.org/doc/260663>.

@article{Shabanskaya2013,
abstract = {A pair of sequences of nilpotent Lie algebras denoted by $N_\{n,11\}$ and $N_\{n,19\}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_\{n,11\}$ and $N_\{n,19\}$ all possible solvable extensions are constructed so that $N_\{n,11\}$ and $N_\{n,19\}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.},
author = {Shabanskaya, A., Thompson, Gerard},
journal = {Archivum Mathematicum},
keywords = {solvable Lie algebra; nilradical; derivation; solvable Lie algebra; nilradical; derivation},
language = {eng},
number = {3},
pages = {141-159},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Solvable extensions of a special class of nilpotent Lie algebras},
url = {http://eudml.org/doc/260663},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Shabanskaya, A.
AU - Thompson, Gerard
TI - Solvable extensions of a special class of nilpotent Lie algebras
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 3
SP - 141
EP - 159
AB - A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.
LA - eng
KW - solvable Lie algebra; nilradical; derivation; solvable Lie algebra; nilradical; derivation
UR - http://eudml.org/doc/260663
ER -

References

top
  1. Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1088/0305-4470/39/6/008, J. Phys. A 39 (6) (2006), 1339–1355. (2006) Zbl1095.17003MR2202805DOI10.1088/0305-4470/39/6/008
  2. Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1016/j.geomphys.2011.06.015, J. Geom. Phys. 61 (11) (2011), 2168–2186. (2011) Zbl1275.17023MR2827117DOI10.1016/j.geomphys.2011.06.015
  3. Campoamor–Stursberg, R., 10.1088/1751-8113/43/14/145202, J. Phys. A 43 (14) (2010), 18pp., 145202. (2010) MR2606433DOI10.1088/1751-8113/43/14/145202
  4. Cartan, E., Sur la structure des groupes de transformations finis et continus, Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. (1933) Zbl0007.10204
  5. Gantmacher, F., On the classification of real simple Lie groups, Mat. Sb. (1950), 103–112. (1950) 
  6. Gong, M.–P., Classification of nilpotent Lie algebras of dimension 7 , Ph.D. thesis, University of Waterloo, 1998. (1998) 
  7. Hindeleh, F., Thompson, G., Seven dimensional Lie algebras with a four-dimensional nilradical, Algebras Groups Geom. 25 (3) (2008), 243–265. (2008) Zbl1210.17016MR2522804
  8. Humphreys, J., Lie algebras and their representations, Springer, 1997. (1997) 
  9. Jacobson, N., Lie algebras, Interscience Publishers, 1962. (1962) Zbl0121.27504MR0143793
  10. Morozov, V. V., Classification of nilpotent Lie algebras in dimension six, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. (1958) MR0130326
  11. Mubarakzyanov, G. M., Classification of real Lie algebras in dimension five, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. (1963) MR0155871
  12. Mubarakzyanov, G. M., Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. (1963) MR0155872
  13. Mubarakzyanov, G. M., On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. (1963) Zbl0166.04104MR0153714
  14. Ndogmo, J. C., Winternitz, P., 10.1088/0305-4470/27/2/024, J. Phys. A 27 (2) (1994), 405–423. (1994) Zbl0835.17007MR1267422DOI10.1088/0305-4470/27/2/024
  15. Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H., 10.1063/1.522992, J. Math. Phys. 17 (1976), 986–994. (1976) Zbl0357.17004MR0404362DOI10.1063/1.522992
  16. Rubin, J. L., Winternitz, P., 10.1088/0305-4470/26/5/031, J. Phys. A 26 (1993), 1123–1138. (1993) Zbl0773.17004MR1211350DOI10.1088/0305-4470/26/5/031
  17. Seeley, C., 7 –dimensional nilpotent Lie algebra, Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. (1993) MR1068933
  18. Shabanskaya, A., Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over , Ph.D. thesis, University of Toledo, 2011. (2011) MR2890187
  19. Shabanskaya, A., Thompson, G., Six–dimensional Lie algebras with a five–dimensional nilradical, J. Lie Theory 23 (2) (2013), 313–355. (2013) Zbl1280.17014MR3113513
  20. Skjelbred, T., Sund, T., Classification of nilpotent Lie algebras in dimension six, University of Oslo, 1977, preprint. (1977) 
  21. Snobl, L., 10.1088/1751-8113/43/50/505202, J. Phys. A 43 (50) (2010), 17pp. (2010) Zbl1231.17004MR2740380DOI10.1088/1751-8113/43/50/505202
  22. Snobl, L., Maximal solvable extensions of filiform algebras, Arch. Math. (Brno 47 (5) (2011), 405–414. (2011) Zbl1265.17017MR2876944
  23. Snobl, L., Karasek, D., 10.1016/j.laa.2009.11.035, Linear Algebra Appl. 432 (7) (2010), 18/36–1850. (2010) Zbl1223.17017MR2592920DOI10.1016/j.laa.2009.11.035
  24. Snobl, L., Winternitz, P., 10.1088/0305-4470/38/12/011, J. Phys. A 38 (12) (2005), 2687–2700. (2005) Zbl1063.22023MR2132082DOI10.1088/0305-4470/38/12/011
  25. Snobl, L., Winternitz, P., All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n - 1 , J. Phys. A 2009 (2009), 16pp., 105201. (2009) Zbl1178.17009MR2485857
  26. Tremblay, S., Winternitz, P., 10.1088/0305-4470/31/2/033, J. Phys. A. 31 (2) (1998), 789–806. (1998) Zbl1001.17011MR1629163DOI10.1088/0305-4470/31/2/033
  27. Turkowski, P., 10.1063/1.528721, J. Math. Phys. 31 (6) (1990), 1344–1350. (1990) Zbl0722.17012MR1054322DOI10.1063/1.528721
  28. Umlauf, K. A., Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null, Ph.D. thesis, University of Leipzig, 1891. (1891) 
  29. Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes, Bull. Math. Soc. France 78 (1970), 81–116. (1970) Zbl0244.17011MR0289609
  30. Wang, Y., Lin, J., Deng, S., 10.1080/00927870802174629, Comm. Algebra 36 (11) (2008), 4052–4067. (2008) Zbl1230.17007MR2460402DOI10.1080/00927870802174629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.