Solvable extensions of a special class of nilpotent Lie algebras
A. Shabanskaya; Gerard Thompson
Archivum Mathematicum (2013)
- Volume: 049, Issue: 3, page 141-159
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topShabanskaya, A., and Thompson, Gerard. "Solvable extensions of a special class of nilpotent Lie algebras." Archivum Mathematicum 049.3 (2013): 141-159. <http://eudml.org/doc/260663>.
@article{Shabanskaya2013,
abstract = {A pair of sequences of nilpotent Lie algebras denoted by $N_\{n,11\}$ and $N_\{n,19\}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_\{n,11\}$ and $N_\{n,19\}$ all possible solvable extensions are constructed so that $N_\{n,11\}$ and $N_\{n,19\}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.},
author = {Shabanskaya, A., Thompson, Gerard},
journal = {Archivum Mathematicum},
keywords = {solvable Lie algebra; nilradical; derivation; solvable Lie algebra; nilradical; derivation},
language = {eng},
number = {3},
pages = {141-159},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Solvable extensions of a special class of nilpotent Lie algebras},
url = {http://eudml.org/doc/260663},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Shabanskaya, A.
AU - Thompson, Gerard
TI - Solvable extensions of a special class of nilpotent Lie algebras
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 3
SP - 141
EP - 159
AB - A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.
LA - eng
KW - solvable Lie algebra; nilradical; derivation; solvable Lie algebra; nilradical; derivation
UR - http://eudml.org/doc/260663
ER -
References
top- Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1088/0305-4470/39/6/008, J. Phys. A 39 (6) (2006), 1339–1355. (2006) Zbl1095.17003MR2202805DOI10.1088/0305-4470/39/6/008
- Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L., 10.1016/j.geomphys.2011.06.015, J. Geom. Phys. 61 (11) (2011), 2168–2186. (2011) Zbl1275.17023MR2827117DOI10.1016/j.geomphys.2011.06.015
- Campoamor–Stursberg, R., 10.1088/1751-8113/43/14/145202, J. Phys. A 43 (14) (2010), 18pp., 145202. (2010) MR2606433DOI10.1088/1751-8113/43/14/145202
- Cartan, E., Sur la structure des groupes de transformations finis et continus, Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. (1933) Zbl0007.10204
- Gantmacher, F., On the classification of real simple Lie groups, Mat. Sb. (1950), 103–112. (1950)
- Gong, M.–P., Classification of nilpotent Lie algebras of dimension , Ph.D. thesis, University of Waterloo, 1998. (1998)
- Hindeleh, F., Thompson, G., Seven dimensional Lie algebras with a four-dimensional nilradical, Algebras Groups Geom. 25 (3) (2008), 243–265. (2008) Zbl1210.17016MR2522804
- Humphreys, J., Lie algebras and their representations, Springer, 1997. (1997)
- Jacobson, N., Lie algebras, Interscience Publishers, 1962. (1962) Zbl0121.27504MR0143793
- Morozov, V. V., Classification of nilpotent Lie algebras in dimension six, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. (1958) MR0130326
- Mubarakzyanov, G. M., Classification of real Lie algebras in dimension five, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. (1963) MR0155871
- Mubarakzyanov, G. M., Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. (1963) MR0155872
- Mubarakzyanov, G. M., On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. (1963) Zbl0166.04104MR0153714
- Ndogmo, J. C., Winternitz, P., 10.1088/0305-4470/27/2/024, J. Phys. A 27 (2) (1994), 405–423. (1994) Zbl0835.17007MR1267422DOI10.1088/0305-4470/27/2/024
- Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H., 10.1063/1.522992, J. Math. Phys. 17 (1976), 986–994. (1976) Zbl0357.17004MR0404362DOI10.1063/1.522992
- Rubin, J. L., Winternitz, P., 10.1088/0305-4470/26/5/031, J. Phys. A 26 (1993), 1123–1138. (1993) Zbl0773.17004MR1211350DOI10.1088/0305-4470/26/5/031
- Seeley, C., –dimensional nilpotent Lie algebra, Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. (1993) MR1068933
- Shabanskaya, A., Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over , Ph.D. thesis, University of Toledo, 2011. (2011) MR2890187
- Shabanskaya, A., Thompson, G., Six–dimensional Lie algebras with a five–dimensional nilradical, J. Lie Theory 23 (2) (2013), 313–355. (2013) Zbl1280.17014MR3113513
- Skjelbred, T., Sund, T., Classification of nilpotent Lie algebras in dimension six, University of Oslo, 1977, preprint. (1977)
- Snobl, L., 10.1088/1751-8113/43/50/505202, J. Phys. A 43 (50) (2010), 17pp. (2010) Zbl1231.17004MR2740380DOI10.1088/1751-8113/43/50/505202
- Snobl, L., Maximal solvable extensions of filiform algebras, Arch. Math. (Brno 47 (5) (2011), 405–414. (2011) Zbl1265.17017MR2876944
- Snobl, L., Karasek, D., 10.1016/j.laa.2009.11.035, Linear Algebra Appl. 432 (7) (2010), 18/36–1850. (2010) Zbl1223.17017MR2592920DOI10.1016/j.laa.2009.11.035
- Snobl, L., Winternitz, P., 10.1088/0305-4470/38/12/011, J. Phys. A 38 (12) (2005), 2687–2700. (2005) Zbl1063.22023MR2132082DOI10.1088/0305-4470/38/12/011
- Snobl, L., Winternitz, P., All solvable extensions of a class of nilpotent Lie algebras of dimension and degree of nilpotency , J. Phys. A 2009 (2009), 16pp., 105201. (2009) Zbl1178.17009MR2485857
- Tremblay, S., Winternitz, P., 10.1088/0305-4470/31/2/033, J. Phys. A. 31 (2) (1998), 789–806. (1998) Zbl1001.17011MR1629163DOI10.1088/0305-4470/31/2/033
- Turkowski, P., 10.1063/1.528721, J. Math. Phys. 31 (6) (1990), 1344–1350. (1990) Zbl0722.17012MR1054322DOI10.1063/1.528721
- Umlauf, K. A., Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null, Ph.D. thesis, University of Leipzig, 1891. (1891)
- Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes, Bull. Math. Soc. France 78 (1970), 81–116. (1970) Zbl0244.17011MR0289609
- Wang, Y., Lin, J., Deng, S., 10.1080/00927870802174629, Comm. Algebra 36 (11) (2008), 4052–4067. (2008) Zbl1230.17007MR2460402DOI10.1080/00927870802174629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.