On μ -singular and μ -extending modules

Yahya Talebi; Ali Reza Moniri Hamzekolaee

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 3, page 183-196
  • ISSN: 0044-8753

Abstract

top
Let M be a module and μ be a class of modules in Mod - R which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a μ -essential submodule provided it has a non-zero intersection with any non-zero submodule in μ . We define and investigate μ -singular modules. We also introduce μ -extending and weakly μ -extending modules and mainly study weakly μ -extending modules. We give some characterizations of μ -co-H-rings by weakly μ -extending modules. Let R be a right non- μ -singular ring such that all injective modules are non- μ -singular, then R is right μ -co-H-ring if and only if R is a QF-ring.

How to cite

top

Talebi, Yahya, and Hamzekolaee, Ali Reza Moniri. "On $\mu $-singular and $\mu $-extending modules." Archivum Mathematicum 048.3 (2012): 183-196. <http://eudml.org/doc/246507>.

@article{Talebi2012,
abstract = {Let $M$ be a module and $\mu $ be a class of modules in $\operatorname\{Mod\}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.},
author = {Talebi, Yahya, Hamzekolaee, Ali Reza Moniri},
journal = {Archivum Mathematicum},
keywords = {$\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module; essential submodules; singular modules; -extending modules; weakly extending modules},
language = {eng},
number = {3},
pages = {183-196},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On $\mu $-singular and $\mu $-extending modules},
url = {http://eudml.org/doc/246507},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Talebi, Yahya
AU - Hamzekolaee, Ali Reza Moniri
TI - On $\mu $-singular and $\mu $-extending modules
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 3
SP - 183
EP - 196
AB - Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
LA - eng
KW - $\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module; essential submodules; singular modules; -extending modules; weakly extending modules
UR - http://eudml.org/doc/246507
ER -

References

top
  1. Chatters, A. W., Khuri, S. M., 10.1112/jlms/s2-21.3.434, J. London Math. Soc. 21 (2) (1980), 434–444. (1980) MR0577719DOI10.1112/jlms/s2-21.3.434
  2. Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman, London, 1994. (1994) 
  3. Faith, C., Algebra II: Ring Theory, Springer–Verlag Berlin–Heidelberg–New York, 1976. (1976) MR0427349
  4. Goodearl, K. R., Ring Theory, Marcel Dekker, New York – Basel, 1976. (1976) MR0429962
  5. Mohamed, S. H., Müller, B. J., Continuous and Discrete Modules, London Math. Soc. 147 (1990). (1990) MR1084376
  6. Oshiro, K., Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310–338. (1984) MR0764267
  7. Özcan, A. Ç., On GCO–modules and M–small modules, Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. (2002) Zbl1038.16005MR1981050
  8. Özcan, A. Ç., On μ –essential and μ M –singular modules, Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. (2007) MR2513224
  9. Özcan, A. Ç., 10.1080/00927870601074871, Comm. Algebra 35 (2007), 623–633. (2007) Zbl1117.16020MR2294622DOI10.1080/00927870601074871
  10. Talebi, Y., Vanaja, N., 10.1080/00927870209342390, Comm. Algebra 30 (3) (2002), 1449–1460. (2002) Zbl1005.16029MR1892609DOI10.1080/00927870209342390

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.