On -singular and -extending modules
Yahya Talebi; Ali Reza Moniri Hamzekolaee
Archivum Mathematicum (2012)
- Volume: 048, Issue: 3, page 183-196
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTalebi, Yahya, and Hamzekolaee, Ali Reza Moniri. "On $\mu $-singular and $\mu $-extending modules." Archivum Mathematicum 048.3 (2012): 183-196. <http://eudml.org/doc/246507>.
@article{Talebi2012,
abstract = {Let $M$ be a module and $\mu $ be a class of modules in $\operatorname\{Mod\}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.},
author = {Talebi, Yahya, Hamzekolaee, Ali Reza Moniri},
journal = {Archivum Mathematicum},
keywords = {$\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module; essential submodules; singular modules; -extending modules; weakly extending modules},
language = {eng},
number = {3},
pages = {183-196},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On $\mu $-singular and $\mu $-extending modules},
url = {http://eudml.org/doc/246507},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Talebi, Yahya
AU - Hamzekolaee, Ali Reza Moniri
TI - On $\mu $-singular and $\mu $-extending modules
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 3
SP - 183
EP - 196
AB - Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
LA - eng
KW - $\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module; essential submodules; singular modules; -extending modules; weakly extending modules
UR - http://eudml.org/doc/246507
ER -
References
top- Chatters, A. W., Khuri, S. M., 10.1112/jlms/s2-21.3.434, J. London Math. Soc. 21 (2) (1980), 434–444. (1980) MR0577719DOI10.1112/jlms/s2-21.3.434
- Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman, London, 1994. (1994)
- Faith, C., Algebra II: Ring Theory, Springer–Verlag Berlin–Heidelberg–New York, 1976. (1976) MR0427349
- Goodearl, K. R., Ring Theory, Marcel Dekker, New York – Basel, 1976. (1976) MR0429962
- Mohamed, S. H., Müller, B. J., Continuous and Discrete Modules, London Math. Soc. 147 (1990). (1990) MR1084376
- Oshiro, K., Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310–338. (1984) MR0764267
- Özcan, A. Ç., On GCO–modules and M–small modules, Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. (2002) Zbl1038.16005MR1981050
- Özcan, A. Ç., On –essential and ––singular modules, Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. (2007) MR2513224
- Özcan, A. Ç., 10.1080/00927870601074871, Comm. Algebra 35 (2007), 623–633. (2007) Zbl1117.16020MR2294622DOI10.1080/00927870601074871
- Talebi, Y., Vanaja, N., 10.1080/00927870209342390, Comm. Algebra 30 (3) (2002), 1449–1460. (2002) Zbl1005.16029MR1892609DOI10.1080/00927870209342390
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.