Projective metrizability in Finsler geometry
Communications in Mathematics (2012)
- Volume: 20, Issue: 1, page 63-68
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSaunders, David. "Projective metrizability in Finsler geometry." Communications in Mathematics 20.1 (2012): 63-68. <http://eudml.org/doc/246622>.
@article{Saunders2012,
abstract = {The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.},
author = {Saunders, David},
journal = {Communications in Mathematics},
keywords = {Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form; Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form},
language = {eng},
number = {1},
pages = {63-68},
publisher = {University of Ostrava},
title = {Projective metrizability in Finsler geometry},
url = {http://eudml.org/doc/246622},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Saunders, David
TI - Projective metrizability in Finsler geometry
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 1
SP - 63
EP - 68
AB - The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
LA - eng
KW - Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form; Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
UR - http://eudml.org/doc/246622
ER -
References
top- Bao, D., Chern, S.-S., Shen, Z., An Introduction to Riemann-Finsler Geometry, 2000, Springer (2000) Zbl0954.53001MR1747675
- Crampin, M., Mestdag, T., Saunders, D.J., 10.1016/j.difgeo.2012.07.004, Diff. Geom. Appl., 30, 6, 2012, 604-621 (2012) Zbl1257.53105MR2996856DOI10.1016/j.difgeo.2012.07.004
- Crampin, M., Mestdag, T., Saunders, D.J., Hilbert forms for a Finsler metrizable projective class of sprays, Diff. Geom. Appl., to appear
- Krupková, O., Prince, G.E., Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations, Handbook of Global Analysis, 2008, 837-904, Elsevier (2008) Zbl1236.58027MR2389647
- Shen, Z., Differential Geometry of Spray and Finsler Spaces, 2001, Kluwer (2001) Zbl1009.53004MR1967666
- Whitehead, J.H.C., 10.1093/qmath/os-3.1.33, Quart. J. Math., 3, 1932, 33-42 (1932) Zbl0004.13102DOI10.1093/qmath/os-3.1.33
- Whitehead, J.H.C., 10.1093/qmath/os-4.1.226, Quart. J. Math., 4, 1933, 226-227 (1933) Zbl0007.36801DOI10.1093/qmath/os-4.1.226
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.