On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions

Miroslav Bulíček; Roger Lewandowski; Josef Málek

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 1, page 89-114
  • ISSN: 0010-2628

Abstract

top
In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity ν polynomially increasing with a scalar quantity k that evolves according to an evolutionary convection diffusion equation with the right hand side ν ( k ) | 𝖣 ( v ) | 2 that is merely L 1 -integrable over space and time. We also formulate a conjecture concerning regularity of such a solution.

How to cite

top

Bulíček, Miroslav, Lewandowski, Roger, and Málek, Josef. "On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 89-114. <http://eudml.org/doc/246630>.

@article{Bulíček2011,
abstract = {In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity $\nu $ polynomially increasing with a scalar quantity $k$ that evolves according to an evolutionary convection diffusion equation with the right hand side $\nu (k)|\{\mathsf \{D\}\}(\vec\{v\})|^2$ that is merely $L^1$-integrable over space and time. We also formulate a conjecture concerning regularity of such a solution.},
author = {Bulíček, Miroslav, Lewandowski, Roger, Málek, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; regularity; turbulent kinetic energy model; large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; turbulent kinetic energy model},
language = {eng},
number = {1},
pages = {89-114},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions},
url = {http://eudml.org/doc/246630},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Bulíček, Miroslav
AU - Lewandowski, Roger
AU - Málek, Josef
TI - On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 89
EP - 114
AB - In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity $\nu $ polynomially increasing with a scalar quantity $k$ that evolves according to an evolutionary convection diffusion equation with the right hand side $\nu (k)|{\mathsf {D}}(\vec{v})|^2$ that is merely $L^1$-integrable over space and time. We also formulate a conjecture concerning regularity of such a solution.
LA - eng
KW - large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; regularity; turbulent kinetic energy model; large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; turbulent kinetic energy model
UR - http://eudml.org/doc/246630
ER -

References

top
  1. Bernardi C., Chacón Rebollo T., Gómez Mármol M., Lewandowski R., Murat F., 10.1007/s00211-003-0490-9, Numer. Math. 98 (2004), no. 1, 33–66. MR2076053DOI10.1007/s00211-003-0490-9
  2. Bernardi C., Chacón Rebollo T., Hecht F., Lewandowski R., 10.1142/S0218202509003747, Math. Models Methods Appl. Sci. 19 (2009), no. 7, 1139–1183. MR2553180DOI10.1142/S0218202509003747
  3. Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F., 10.1016/S0168-2024(02)80006-6, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, pp. 69–102. MR1935990DOI10.1016/S0168-2024(02)80006-6
  4. Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F., 10.1137/S0036142901385829, SIAM J. Numer. Anal. 40 (2002), no. 6, 2368–2394 (electronic) (2003). MR1974191DOI10.1137/S0036142901385829
  5. Blanke B., Delecluse P., 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2, J. Phys. Oceanogr. 23 (1993), 1363–1388. DOI10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
  6. Brossier F., Lewandowski R., 10.1051/m2an:2002016, M2AN Math. Model. Numer. Anal. 36 (2002), no. 2, 345–372. Zbl1040.35057MR1906822DOI10.1051/m2an:2002016
  7. Bulíček M., Málek J., Rajagopal K.R., 10.1137/07069540X, SIAM J. Math. Anal.41 (2009), no. 2, 665–707. MR2515781DOI10.1137/07069540X
  8. Bulíček M., Feireisl E., Málek J., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015. MR2474275
  9. Bulíček M., Málek J., Rajagopal K.R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51–85. Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
  10. Caffarelli L., Kohn R., Nirenberg L., 10.1002/cpa.3160350604, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
  11. Chacon T., Pironneau O., On the mathematical foundations of the k - ϵ turbulent model, Vistas in Applied Mathematics, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986, pp. 44–56. Zbl0618.76049MR0859923
  12. Chácon Rebollo T., 10.1137/0148067, SIAM J. Appl. Math. 48 (1988), no. 5, 1128–1146. MR0960475DOI10.1137/0148067
  13. Feireisl E., Málek J., On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech. 2006, Art. ID 90616, 14 pp. (electronic). MR2233755
  14. Gallouët T., Lederer J., Lewandowski R., Murat F., Tartar L., 10.1016/S0362-546X(01)00890-2, Nonlinear Anal. 52 (2003), no. 4, 1051–1068. MR1941245DOI10.1016/S0362-546X(01)00890-2
  15. Kolmogorov A.N., Equations of turbulent motion in an incompressible fluid, Izv. Akad. Nauk SSSR, Seria fizicheska 6 (1942), no. 1–2, 56–58. 
  16. Kolmogorov A.N., Selected works of A.N. Kolmogorov, Vol. I, . Mathematics and Mechanics. With commentaries by V.I. Arnol'd, V.A. Skvortsov, P.L. Ul'yanov et al., translated from the Russian original by V.M. Volosov. Edited and with a preface, foreword and brief biography by V.M. Tikhomirov. Mathematics and its Applications (Soviet Series), 25, Kluwer Academic Publishers Group, Dordrecht, 1991. MR1175399
  17. Launder B.E., Spalding D.B., Mathematical Models of Turbulence, Academic Press, 1972. Zbl0288.76027
  18. Lederer J., Lewandowski R., 10.1016/j.anihpc.2006.03.011, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413–441. Zbl1132.35069MR2321200DOI10.1016/j.anihpc.2006.03.011
  19. Lewandowski R., Les équations de Stokes et de Navier-Stokes couplées avec l'équation de l'énergie cinétique turbulente, C.R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 12, 1097–1102. Zbl0806.35138MR1282351
  20. Lewandowski R., Analyse Mathématique et Océanographie, Masson, 1997. 
  21. Lewandowski R., 10.1016/0362-546X(95)00149-P, Nonlinear Anal. 28 (1997), no. 2, 393–417. Zbl0863.35077MR1418142DOI10.1016/0362-546X(95)00149-P
  22. Lewandowski R., Pichot G., 10.1016/j.cma.2007.06.007, Comput. Methods Appl. Mech. Engrg. 196 (2007). no. 45–48, 4737–4754. Zbl1173.76410MR2354460DOI10.1016/j.cma.2007.06.007
  23. Lions P.L., Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996. Zbl0866.76002MR1422251
  24. Málek J., Nečas J., Rokyta M., Růžička M., Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996. MR1409366
  25. McLaughlin D.W., Papanicolaou G.C., Pironneau O.R., 10.1137/0145046, SIAM J. Appl. Math. 45 (1985), no. 5, 780–797. Zbl0622.76062MR0804006DOI10.1137/0145046
  26. Mohammadi B., Pironneau O., Analysis of the k -epsilon turbulence model, RAM: Research in Applied Mathematics, Masson, Paris, 1994. MR1296252
  27. Naumann J., 10.1002/mma.754, Math. Methods Appl. Sci. 29 (2006), no. 16, 1883–1906. Zbl1106.76016MR2259989DOI10.1002/mma.754
  28. Pichot G., Germain G., Priour D., 10.1016/j.euromechflu.2008.02.002, European Journal of Mechanics - B/Fluids, 28 (2009), 103–116. Zbl1153.76309DOI10.1016/j.euromechflu.2008.02.002
  29. Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR0916688
  30. Spalding D.B., Kolmogorov's two-equation model of turbulence. Turbulence and stochastic processes: Kolmogorov's ideas 50 years on, Proc. Roy. Soc. London Ser. A 434 (1991), no. 1890, 211–216. MR1124931
  31. Vasseur A., 10.1007/s00030-007-6001-4, Nonlinear Differ. Equ. Appl. 14 (2007), 753–785. Zbl1142.35066MR2374209DOI10.1007/s00030-007-6001-4
  32. Vialard J., Delecluse P., 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2, J. Phys. Oceanogr. 28 (1998), 1089–1106. DOI10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.