On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions
Miroslav Bulíček; Roger Lewandowski; Josef Málek
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 89-114
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBulíček, Miroslav, Lewandowski, Roger, and Málek, Josef. "On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 89-114. <http://eudml.org/doc/246630>.
@article{Bulíček2011,
abstract = {In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity $\nu $ polynomially increasing with a scalar quantity $k$ that evolves according to an evolutionary convection diffusion equation with the right hand side $\nu (k)|\{\mathsf \{D\}\}(\vec\{v\})|^2$ that is merely $L^1$-integrable over space and time. We also formulate a conjecture concerning regularity of such a solution.},
author = {Bulíček, Miroslav, Lewandowski, Roger, Málek, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; regularity; turbulent kinetic energy model; large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; turbulent kinetic energy model},
language = {eng},
number = {1},
pages = {89-114},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions},
url = {http://eudml.org/doc/246630},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Bulíček, Miroslav
AU - Lewandowski, Roger
AU - Málek, Josef
TI - On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 89
EP - 114
AB - In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity $\nu $ polynomially increasing with a scalar quantity $k$ that evolves according to an evolutionary convection diffusion equation with the right hand side $\nu (k)|{\mathsf {D}}(\vec{v})|^2$ that is merely $L^1$-integrable over space and time. We also formulate a conjecture concerning regularity of such a solution.
LA - eng
KW - large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; regularity; turbulent kinetic energy model; large data existence; suitable weak solution; Navier-Stokes-Fourier equations; incompressible fluid; the viscosity increasing with a scalar quantity; turbulent kinetic energy model
UR - http://eudml.org/doc/246630
ER -
References
top- Bernardi C., Chacón Rebollo T., Gómez Mármol M., Lewandowski R., Murat F., 10.1007/s00211-003-0490-9, Numer. Math. 98 (2004), no. 1, 33–66. MR2076053DOI10.1007/s00211-003-0490-9
- Bernardi C., Chacón Rebollo T., Hecht F., Lewandowski R., 10.1142/S0218202509003747, Math. Models Methods Appl. Sci. 19 (2009), no. 7, 1139–1183. MR2553180DOI10.1142/S0218202509003747
- Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F., 10.1016/S0168-2024(02)80006-6, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, pp. 69–102. MR1935990DOI10.1016/S0168-2024(02)80006-6
- Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F., 10.1137/S0036142901385829, SIAM J. Numer. Anal. 40 (2002), no. 6, 2368–2394 (electronic) (2003). MR1974191DOI10.1137/S0036142901385829
- Blanke B., Delecluse P., 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2, J. Phys. Oceanogr. 23 (1993), 1363–1388. DOI10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
- Brossier F., Lewandowski R., 10.1051/m2an:2002016, M2AN Math. Model. Numer. Anal. 36 (2002), no. 2, 345–372. Zbl1040.35057MR1906822DOI10.1051/m2an:2002016
- Bulíček M., Málek J., Rajagopal K.R., 10.1137/07069540X, SIAM J. Math. Anal.41 (2009), no. 2, 665–707. MR2515781DOI10.1137/07069540X
- Bulíček M., Feireisl E., Málek J., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015. MR2474275
- Bulíček M., Málek J., Rajagopal K.R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51–85. Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
- Caffarelli L., Kohn R., Nirenberg L., 10.1002/cpa.3160350604, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
- Chacon T., Pironneau O., On the mathematical foundations of the - turbulent model, Vistas in Applied Mathematics, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986, pp. 44–56. Zbl0618.76049MR0859923
- Chácon Rebollo T., 10.1137/0148067, SIAM J. Appl. Math. 48 (1988), no. 5, 1128–1146. MR0960475DOI10.1137/0148067
- Feireisl E., Málek J., On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech. 2006, Art. ID 90616, 14 pp. (electronic). MR2233755
- Gallouët T., Lederer J., Lewandowski R., Murat F., Tartar L., 10.1016/S0362-546X(01)00890-2, Nonlinear Anal. 52 (2003), no. 4, 1051–1068. MR1941245DOI10.1016/S0362-546X(01)00890-2
- Kolmogorov A.N., Equations of turbulent motion in an incompressible fluid, Izv. Akad. Nauk SSSR, Seria fizicheska 6 (1942), no. 1–2, 56–58.
- Kolmogorov A.N., Selected works of A.N. Kolmogorov, Vol. I, . Mathematics and Mechanics. With commentaries by V.I. Arnol'd, V.A. Skvortsov, P.L. Ul'yanov et al., translated from the Russian original by V.M. Volosov. Edited and with a preface, foreword and brief biography by V.M. Tikhomirov. Mathematics and its Applications (Soviet Series), 25, Kluwer Academic Publishers Group, Dordrecht, 1991. MR1175399
- Launder B.E., Spalding D.B., Mathematical Models of Turbulence, Academic Press, 1972. Zbl0288.76027
- Lederer J., Lewandowski R., 10.1016/j.anihpc.2006.03.011, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413–441. Zbl1132.35069MR2321200DOI10.1016/j.anihpc.2006.03.011
- Lewandowski R., Les équations de Stokes et de Navier-Stokes couplées avec l'équation de l'énergie cinétique turbulente, C.R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 12, 1097–1102. Zbl0806.35138MR1282351
- Lewandowski R., Analyse Mathématique et Océanographie, Masson, 1997.
- Lewandowski R., 10.1016/0362-546X(95)00149-P, Nonlinear Anal. 28 (1997), no. 2, 393–417. Zbl0863.35077MR1418142DOI10.1016/0362-546X(95)00149-P
- Lewandowski R., Pichot G., 10.1016/j.cma.2007.06.007, Comput. Methods Appl. Mech. Engrg. 196 (2007). no. 45–48, 4737–4754. Zbl1173.76410MR2354460DOI10.1016/j.cma.2007.06.007
- Lions P.L., Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996. Zbl0866.76002MR1422251
- Málek J., Nečas J., Rokyta M., Růžička M., Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996. MR1409366
- McLaughlin D.W., Papanicolaou G.C., Pironneau O.R., 10.1137/0145046, SIAM J. Appl. Math. 45 (1985), no. 5, 780–797. Zbl0622.76062MR0804006DOI10.1137/0145046
- Mohammadi B., Pironneau O., Analysis of the -epsilon turbulence model, RAM: Research in Applied Mathematics, Masson, Paris, 1994. MR1296252
- Naumann J., 10.1002/mma.754, Math. Methods Appl. Sci. 29 (2006), no. 16, 1883–1906. Zbl1106.76016MR2259989DOI10.1002/mma.754
- Pichot G., Germain G., Priour D., 10.1016/j.euromechflu.2008.02.002, European Journal of Mechanics - B/Fluids, 28 (2009), 103–116. Zbl1153.76309DOI10.1016/j.euromechflu.2008.02.002
- Simon J., Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR0916688
- Spalding D.B., Kolmogorov's two-equation model of turbulence. Turbulence and stochastic processes: Kolmogorov's ideas 50 years on, Proc. Roy. Soc. London Ser. A 434 (1991), no. 1890, 211–216. MR1124931
- Vasseur A., 10.1007/s00030-007-6001-4, Nonlinear Differ. Equ. Appl. 14 (2007), 753–785. Zbl1142.35066MR2374209DOI10.1007/s00030-007-6001-4
- Vialard J., Delecluse P., 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2, J. Phys. Oceanogr. 28 (1998), 1089–1106. DOI10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.