A RANS 3D model with unbounded eddy viscosities

J. Lederer; R. Lewandowski

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 413-441
  • ISSN: 0294-1449

How to cite

top

Lederer, J., and Lewandowski, R.. "A RANS 3D model with unbounded eddy viscosities." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 413-441. <http://eudml.org/doc/78742>.

@article{Lederer2007,
author = {Lederer, J., Lewandowski, R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {turbulence model; unbounded eddy viscosities; elliptic equation; Raynolds averaged Navier-Stokes model},
language = {eng},
number = {3},
pages = {413-441},
publisher = {Elsevier},
title = {A RANS 3D model with unbounded eddy viscosities},
url = {http://eudml.org/doc/78742},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Lederer, J.
AU - Lewandowski, R.
TI - A RANS 3D model with unbounded eddy viscosities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 413
EP - 441
LA - eng
KW - turbulence model; unbounded eddy viscosities; elliptic equation; Raynolds averaged Navier-Stokes model
UR - http://eudml.org/doc/78742
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] Batchelor G., The Theory of Homogeneous Turbulence, Cambridge University Press, 1953. Zbl0053.14404MR52268
  3. [3] Bernardi C., Chacon-Rebello T., Lewandowski R., Murat F., A model for two coupled turbulent fluids, part 1: Analysis of the system, in: Series in Applied Mathematics, vol. 34, North-Holland, 2002, pp. 69-102. Zbl1034.35106
  4. [4] Bernardi C., Chacon-Rebello T., Lewandowski R., Murat F., A model for two coupled turbulent fluids, part 2: Numerical approximation by spectral discretization, SIAM J. Numer. Anal.40 (2003) 2368-2394. Zbl1129.76327
  5. [5] Bernardi C., Chacon-Rebello T., Lewandowski R., Murat F., A model for two coupled turbulent fluids, part 3: Approximation by finite elements, Numer. Math.98 (2004) 33-66. Zbl1129.76326MR2076053
  6. [6] Blanke B., Delecluse P., Variability of the tropical atlantic ocean by a general circulation model with two different mixed layer physic, J. Phys. Ocean.23 (1993) 1363-1388. 
  7. [7] Boccardo L., Gallouët T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal.87 (1989) 149-169. Zbl0707.35060MR1025884
  8. [8] Brézis H., Analyse fonctionnelle, seconde ed., Masson, 1993. Zbl0511.46001MR697382
  9. [9] Brossier F., Lewandowski R., On a first order closure system modelizing turbulent flows, Math. Modelling Numer. Anal.36 (2002) 345-372. Zbl1040.35057MR1906822
  10. [10] Chacón Rebollo T., Oscillations due to the transport of microstructures, SIAM J. Appl. Math.48 (1988) 1128-1146. Zbl0656.76054MR960475
  11. [11] Chen S., Foias C., Holm D., Olson E., Titi E.-S., Camassa–Holm equation as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett.81 (1998) 5338-5341. Zbl1042.76525
  12. [12] S. Clain, Analyse mathématique et numérique d'un modèle de chauffage par induction, PhD thesis, École Polytechnique Fédérale de Lausanne, 1994. 
  13. [13] Clain S., Touzani R., Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, RAIRO Model. Math. Anal. Numer.7 (1997) 845-870. Zbl0894.35035MR1489175
  14. [14] Dauge M., Elliptic Boundary Value Problem on Corner Domains: Smoothness and Asymptotics 0, Springer-Verlag, 1988. Zbl0668.35001MR961439
  15. [15] Deleersnijder E., A note on the stability functions of the Mellor–Yamada level 2 1/2 turbulence closure model, Bull. Soc. Roy. Sc. Liège61 (1992) 397-404. 
  16. [16] DiPerna R.-J., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
  17. [17] Erich J., Fedorovich E., Viegas D.X., Wyngaard J.C. (Eds.), Buoyant Convection in Geophysical Flows, Kluwer, 1998. Zbl0990.76501
  18. [18] Gallouët T., Herbin R., Existence of a solution to a coupled elliptic system, Appl. Math. Lett.2 (1994) 49-55. Zbl0791.35043MR1350145
  19. [19] Gallouët T., Lederer J., Lewandowski R., Murat F., Tartar L., On a turbulent system with unbounded eddy viscosities, J. Nonlinear Anal.52 (2003) 1051-1068. Zbl1013.35068MR1941245
  20. [20] Girault V., Raviart P.-A., Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, 1986. Zbl0585.65077
  21. [21] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Pitman, Boston, 1985. Zbl0695.35060MR775683
  22. [22] Leray J., Schauder J., Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup.51 (1934) 45-78. Zbl60.0322.02MR1509338JFM60.0322.02
  23. [23] Lewandowski R., Analyse Mathématique et Océanographie, Masson, 1997. 
  24. [24] Lewandowski R., The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier–Stokes equation with an eddy viscosity, Nonlinear Anal.28 (1997) 393-417. Zbl0863.35077
  25. [25] Lewandowski R., Mohammadi B., Existence and positivity results for the θ–φ model and a modified k–ε model, Math. Models Methods Appl. Sci.3 (1993) 195-217. Zbl0773.76036
  26. [26] R. Lewandowski, G. Pichot, Application of the fictive domain decomposition method and numerical simulations of water flow around a rigid net, 2006, submitted for publication. 
  27. [27] P.-L. Lions, F. Murat, Renormalisation des équations elliptiques, 1995. 
  28. [28] P.H. Maire, Etude d'une équation de diffusion non linéaire. Application à la discrétisation de l'équation de l'énergie cinétique turbulente pour un modèle de turbulence à une équation, Publications internes du CEA, 2001. 
  29. [29] Mellor G.-L., Yamada T., Development of turbulence closure model for geophysical fluid problem, Rev. Geophys. Space Phys.20 (1982) 851-875. 
  30. [30] Mohammadi B., Pironneau O., Analysis of the k-Epsilon Model, Masson, 1994. MR1296252
  31. [31] Serrin J., Local behavior of solutions of quasi linear equations, Acta Math. (1964). Zbl0128.09101MR170096
  32. [32] Spampacchia G., Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, 1966. Zbl0151.15501MR251373
  33. [33] Temam R., Navier Stokes Equations, North-Holland, 1984. Zbl0568.35002MR769654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.