Ordering the non-starlike trees with large reverse Wiener indices

Shuxian Li; Bo Zhou

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 215-233
  • ISSN: 0011-4642

Abstract

top
The reverse Wiener index of a connected graph G is defined as Λ ( G ) = 1 2 n ( n - 1 ) d - W ( G ) , where n is the number of vertices, d is the diameter, and W ( G ) is the Wiener index (the sum of distances between all unordered pairs of vertices) of G . We determine the n -vertex non-starlike trees with the first four largest reverse Wiener indices for n 8 , and the n -vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for n 10 .

How to cite

top

Li, Shuxian, and Zhou, Bo. "Ordering the non-starlike trees with large reverse Wiener indices." Czechoslovak Mathematical Journal 62.1 (2012): 215-233. <http://eudml.org/doc/246631>.

@article{Li2012,
abstract = {The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac\{1\}\{2\}n(n-1)d-W(G), \] where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.},
author = {Li, Shuxian, Zhou, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance; diameter; Wiener index; reverse Wiener index; trees; starlike trees; caterpillars; diameter; Wiener index; reverse Wiener index; tree},
language = {eng},
number = {1},
pages = {215-233},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ordering the non-starlike trees with large reverse Wiener indices},
url = {http://eudml.org/doc/246631},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Li, Shuxian
AU - Zhou, Bo
TI - Ordering the non-starlike trees with large reverse Wiener indices
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 215
EP - 233
AB - The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac{1}{2}n(n-1)d-W(G), \] where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.
LA - eng
KW - distance; diameter; Wiener index; reverse Wiener index; trees; starlike trees; caterpillars; diameter; Wiener index; reverse Wiener index; tree
UR - http://eudml.org/doc/246631
ER -

References

top
  1. Althöfer, I., 10.1016/0095-8956(90)90136-N, J. Comb. Theory, Ser. B 48 (1990), 140-142. (1990) Zbl0688.05045MR1047559DOI10.1016/0095-8956(90)90136-N
  2. Balaban, A. T., Mills, D., Ivanciuc, O., Basak, S. C., Reverse Wiener indices, Croat. Chem. Acta 73 (2000), 923-941. (2000) 
  3. Cai, X., Zhou, B., Reverse Wiener indices of connected graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 95-105. (2008) MR2423500
  4. Chung, F. R. K., 10.1002/jgt.3190120213, J. Graph Theory 12 (1988), 229-235. (1988) Zbl0644.05029MR0940832DOI10.1002/jgt.3190120213
  5. Dankelmann, P., Mukwembi, S., Swart, H. C., 10.1002/jgt.20395, J. Graph Theory 62 (2009), 157-177. (2009) Zbl1221.05108MR2555095DOI10.1002/jgt.20395
  6. Dobrynin, A. A., Entringer, R., Gutman, I., 10.1023/A:1010767517079, Acta Appl. Math. 66 (2001), 211-249. (2001) Zbl0982.05044MR1843259DOI10.1023/A:1010767517079
  7. Du, Z., Zhou, B., A note on Wiener indices of unicyclic graphs, Ars Comb. 93 (2009), 97-103. (2009) Zbl1224.05139MR2566742
  8. Du, Z., Zhou, B., Minimum on Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. (2010) MR2582967
  9. Du, Z., Zhou, B., 10.1007/s10440-008-9298-z, Acta Appl. Math. 106 (2009), 293-306. (2009) Zbl1172.05351MR2497411DOI10.1007/s10440-008-9298-z
  10. Entringer, R. C., Jackson, D. E., Snyder, D. A., Distance in graphs, Czech. Math. J. 26 (1976), 283-296. (1976) Zbl0329.05112MR0543771
  11. Hosoya, H., 10.1246/bcsj.44.2332, Bull. Chem. Soc. Japan 44 (1971), 2332-2339. (1971) DOI10.1246/bcsj.44.2332
  12. Ivanciuc, O., Ivanciuc, T., Balaban, A. T., Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1 (2002), 467-487. (2002) 
  13. Luo, W., Zhou, B., Further properties of reverse Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009), 653-661. (2009) Zbl1224.05149MR2514237
  14. Luo, W., Zhou, B., 10.1016/j.mcm.2009.02.010, Math. Comput. Modelling 50 (2009), 188-193. (2009) Zbl1185.05146MR2542600DOI10.1016/j.mcm.2009.02.010
  15. Luo, W., Zhou, B., Trinajstić, N., Du, Z., Reverse Wiener indices of graphs of exactly two cycles, Util. Math., in press. 
  16. Nikolić, S., Trinajstić, N., Mihalić, Z., The Wiener index: Development and applications, Croat. Chem. Acta 68 (1995), 105-128. (1995) 
  17. Plesník, J., 10.1002/jgt.3190080102, J. Graph Theory 8 (1984), 1-21. (1984) Zbl0552.05048MR0732013DOI10.1002/jgt.3190080102
  18. Rouvray, D. H., The rich legacy of half a century of the Wiener index, D. H. Rouvray and R. B. King Topology in Chemistry-Discrete Mathematics of Molecules, Norwood, Chichester (2002), 16-37. (2002) 
  19. Trinajstić, N., Chemical Graph Theory, 2nd revised edn, CRC press, Boca Raton (1992), 241-245. (1992) MR1169298
  20. Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
  21. Zhang, B., Zhou, B., 10.1515/zna-2006-10-1104, Z. Naturforsch. 61a (2006), 536-540. (2006) MR2189582DOI10.1515/zna-2006-10-1104
  22. Zhou, B., Trinajstić, N., Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010), 227-242. (2010) 
  23. Zhou, B., Reverse Wiener index, I. Gutman and B. Furtula Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac (2010), 193-204. (2010) Zbl1194.92092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.