Ordering the non-starlike trees with large reverse Wiener indices
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 215-233
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Shuxian, and Zhou, Bo. "Ordering the non-starlike trees with large reverse Wiener indices." Czechoslovak Mathematical Journal 62.1 (2012): 215-233. <http://eudml.org/doc/246631>.
@article{Li2012,
abstract = {The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac\{1\}\{2\}n(n-1)d-W(G), \]
where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.},
author = {Li, Shuxian, Zhou, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance; diameter; Wiener index; reverse Wiener index; trees; starlike trees; caterpillars; diameter; Wiener index; reverse Wiener index; tree},
language = {eng},
number = {1},
pages = {215-233},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ordering the non-starlike trees with large reverse Wiener indices},
url = {http://eudml.org/doc/246631},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Li, Shuxian
AU - Zhou, Bo
TI - Ordering the non-starlike trees with large reverse Wiener indices
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 215
EP - 233
AB - The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac{1}{2}n(n-1)d-W(G), \]
where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.
LA - eng
KW - distance; diameter; Wiener index; reverse Wiener index; trees; starlike trees; caterpillars; diameter; Wiener index; reverse Wiener index; tree
UR - http://eudml.org/doc/246631
ER -
References
top- Althöfer, I., 10.1016/0095-8956(90)90136-N, J. Comb. Theory, Ser. B 48 (1990), 140-142. (1990) Zbl0688.05045MR1047559DOI10.1016/0095-8956(90)90136-N
- Balaban, A. T., Mills, D., Ivanciuc, O., Basak, S. C., Reverse Wiener indices, Croat. Chem. Acta 73 (2000), 923-941. (2000)
- Cai, X., Zhou, B., Reverse Wiener indices of connected graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 95-105. (2008) MR2423500
- Chung, F. R. K., 10.1002/jgt.3190120213, J. Graph Theory 12 (1988), 229-235. (1988) Zbl0644.05029MR0940832DOI10.1002/jgt.3190120213
- Dankelmann, P., Mukwembi, S., Swart, H. C., 10.1002/jgt.20395, J. Graph Theory 62 (2009), 157-177. (2009) Zbl1221.05108MR2555095DOI10.1002/jgt.20395
- Dobrynin, A. A., Entringer, R., Gutman, I., 10.1023/A:1010767517079, Acta Appl. Math. 66 (2001), 211-249. (2001) Zbl0982.05044MR1843259DOI10.1023/A:1010767517079
- Du, Z., Zhou, B., A note on Wiener indices of unicyclic graphs, Ars Comb. 93 (2009), 97-103. (2009) Zbl1224.05139MR2566742
- Du, Z., Zhou, B., Minimum on Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. (2010) MR2582967
- Du, Z., Zhou, B., 10.1007/s10440-008-9298-z, Acta Appl. Math. 106 (2009), 293-306. (2009) Zbl1172.05351MR2497411DOI10.1007/s10440-008-9298-z
- Entringer, R. C., Jackson, D. E., Snyder, D. A., Distance in graphs, Czech. Math. J. 26 (1976), 283-296. (1976) Zbl0329.05112MR0543771
- Hosoya, H., 10.1246/bcsj.44.2332, Bull. Chem. Soc. Japan 44 (1971), 2332-2339. (1971) DOI10.1246/bcsj.44.2332
- Ivanciuc, O., Ivanciuc, T., Balaban, A. T., Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1 (2002), 467-487. (2002)
- Luo, W., Zhou, B., Further properties of reverse Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009), 653-661. (2009) Zbl1224.05149MR2514237
- Luo, W., Zhou, B., 10.1016/j.mcm.2009.02.010, Math. Comput. Modelling 50 (2009), 188-193. (2009) Zbl1185.05146MR2542600DOI10.1016/j.mcm.2009.02.010
- Luo, W., Zhou, B., Trinajstić, N., Du, Z., Reverse Wiener indices of graphs of exactly two cycles, Util. Math., in press.
- Nikolić, S., Trinajstić, N., Mihalić, Z., The Wiener index: Development and applications, Croat. Chem. Acta 68 (1995), 105-128. (1995)
- Plesník, J., 10.1002/jgt.3190080102, J. Graph Theory 8 (1984), 1-21. (1984) Zbl0552.05048MR0732013DOI10.1002/jgt.3190080102
- Rouvray, D. H., The rich legacy of half a century of the Wiener index, D. H. Rouvray and R. B. King Topology in Chemistry-Discrete Mathematics of Molecules, Norwood, Chichester (2002), 16-37. (2002)
- Trinajstić, N., Chemical Graph Theory, 2nd revised edn, CRC press, Boca Raton (1992), 241-245. (1992) MR1169298
- Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
- Zhang, B., Zhou, B., 10.1515/zna-2006-10-1104, Z. Naturforsch. 61a (2006), 536-540. (2006) MR2189582DOI10.1515/zna-2006-10-1104
- Zhou, B., Trinajstić, N., Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010), 227-242. (2010)
- Zhou, B., Reverse Wiener index, I. Gutman and B. Furtula Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac (2010), 193-204. (2010) Zbl1194.92092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.