Closed-form expression for Hankel determinants of the Narayana polynomials

Marko D. Petković; Paul Barry; Predrag Rajković

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 39-57
  • ISSN: 0011-4642

Abstract

top
We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.

How to cite

top

Petković, Marko D., Barry, Paul, and Rajković, Predrag. "Closed-form expression for Hankel determinants of the Narayana polynomials." Czechoslovak Mathematical Journal 62.1 (2012): 39-57. <http://eudml.org/doc/246667>.

@article{Petković2012,
abstract = {We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.},
author = {Petković, Marko D., Barry, Paul, Rajković, Predrag},
journal = {Czechoslovak Mathematical Journal},
keywords = {Narayana numbers; Hankel transform; orthogonal polynomials; Narayana numbers; Hankel transform; orthogonal polynomials},
language = {eng},
number = {1},
pages = {39-57},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Closed-form expression for Hankel determinants of the Narayana polynomials},
url = {http://eudml.org/doc/246667},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Petković, Marko D.
AU - Barry, Paul
AU - Rajković, Predrag
TI - Closed-form expression for Hankel determinants of the Narayana polynomials
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 39
EP - 57
AB - We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.
LA - eng
KW - Narayana numbers; Hankel transform; orthogonal polynomials; Narayana numbers; Hankel transform; orthogonal polynomials
UR - http://eudml.org/doc/246667
ER -

References

top
  1. Barry, P., On integer-sequences-based constructions of generalized Pascal triangles, J. Integer Seq. 59 (2006), Article 06.2.4. Electronic only. (2006) MR2217230
  2. Barry, P., Hennessy, A., Notes on a family of Riordan arrays and associated integer Hankel transforms, J. Integer Seq. 12 (2009), Article ID 09.5.3. Electronic only. (2009) Zbl1201.11034MR2520842
  3. Brändén, P., 10.1016/j.disc.2003.07.006, Discrete Math. 281 (2004), 67-81. (2004) MR2047757DOI10.1016/j.disc.2003.07.006
  4. Brualdi, R. A., Kirkland, S., 10.1016/j.jctb.2005.02.001, J. Comb. Theory Ser. B 94 (2005), 334-351. (2005) Zbl1066.05009MR2145518DOI10.1016/j.jctb.2005.02.001
  5. Chamberland, M., French, C., Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10 (2007). (2007) Zbl1116.11009MR2268452
  6. Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach New York (1978). (1978) Zbl0389.33008MR0481884
  7. Cvetković, A., Rajković, P. M., Ivković, M., Catalan Numbers, the Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002). (2002) Zbl1041.11014MR1919940
  8. Eğecioğlu, O., Redmond, T., Ryavec, C., 10.37236/730, Electron. J. Comb. 15, #R6 (2008). (2008) Zbl1206.05009MR2368911DOI10.37236/730
  9. Eğecioğlu, O., Redmond, T., Ryavec, C., 10.1016/j.jcta.2009.03.016, J. Comb. Theory Ser. A 117 (2010), 77-103. (2010) Zbl1227.05031MR2557881DOI10.1016/j.jcta.2009.03.016
  10. Armas, M. Garcia, Sethuraman, B. A., A note on the Hankel transform of the central binomial coefficients, J. Integer Seq. 11 (2008), Article ID 08.5.8. (2008) MR2465389
  11. Gautschi, W., 10.1017/S0962492900002622, In: Acta Numerica Vol. 5 A. Iserles Cambridge University Press Cambridge (1996), 45-119. (1996) Zbl0871.65011MR1624591DOI10.1017/S0962492900002622
  12. Gautschi, W., Orthogonal Polynomials. Computation and Approximation, Oxford University Press Oxford (2004). (2004) Zbl1130.42300MR2061539
  13. Ismail, M. E. H., 10.1016/j.cam.2004.01.042, J. Comput. Appl. Math. 178 (2005), 255-266. (2005) Zbl1083.15011MR2127884DOI10.1016/j.cam.2004.01.042
  14. Junod, A., 10.1016/S0723-0869(03)80010-5, Expo. Math. 21 (2003), 63-74. (2003) Zbl1153.15304MR1955218DOI10.1016/S0723-0869(03)80010-5
  15. Krattenthaler, C., 10.1016/j.laa.2005.06.042, Linear Algebra Appl. 411 (2005), 68-166. (2005) Zbl1079.05008MR2178686DOI10.1016/j.laa.2005.06.042
  16. Lang, W., 10.1016/S0377-0427(97)00240-9, J. Comput. Appl. Math. 89 (1998), 237-256. (1998) Zbl0910.30003MR1626522DOI10.1016/S0377-0427(97)00240-9
  17. Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), Article 01.1.5. Electronic only. (2001) Zbl0978.15022MR1848942
  18. Liu, L. L., Wang, Y., 10.1016/j.aam.2006.02.003, Adv. Appl. Math. 38 (2007), 542-560. (2007) Zbl1123.05009MR2311051DOI10.1016/j.aam.2006.02.003
  19. MacMahon, P. A., Combinatorial Analysis, Vols. 1 and 2, Cambridge University Press Cambridge (1915), 1916 reprinted by Chelsea, 1960. 
  20. Mansour, T., Sun, Y., 10.1016/j.disc.2008.12.006, Discrete Math. 309 (2009), 4079-4088. (2009) Zbl1191.05016MR2537400DOI10.1016/j.disc.2008.12.006
  21. Narayana, T. V., Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités, C. R. Acad. Sci. 240 (1955), 1188-1189 French. (1955) Zbl0064.12705MR0070648
  22. Rajković, P. M., Petković, M. D., Barry, P., 10.1080/10652460601092303, Integral Transforms Spec. Funct. 18 (2007), 285-296. (2007) Zbl1127.11017MR2319589DOI10.1080/10652460601092303
  23. Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, available at http://www.research.att.com/ {njas/sequences} Zbl1159.11327
  24. Sulanke, R. A., 10.37236/1518, Electron. J. Comb. 7 (2000), #R40. (2000) Zbl0953.05006MR1779937DOI10.37236/1518
  25. Sulanke, R. A., 10.1016/S0378-3758(01)00192-6, J. Statist. Plann. Inference 101 (2002), 311-326. (2002) Zbl1001.05009MR1878867DOI10.1016/S0378-3758(01)00192-6
  26. Xin, G., 10.1016/j.aam.2008.04.003, Adv. Appl. Math. 42 (2009), 152-156. (2009) Zbl1169.05304MR2493974DOI10.1016/j.aam.2008.04.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.