Closed-form expression for Hankel determinants of the Narayana polynomials
Marko D. Petković; Paul Barry; Predrag Rajković
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 39-57
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPetković, Marko D., Barry, Paul, and Rajković, Predrag. "Closed-form expression for Hankel determinants of the Narayana polynomials." Czechoslovak Mathematical Journal 62.1 (2012): 39-57. <http://eudml.org/doc/246667>.
@article{Petković2012,
abstract = {We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.},
author = {Petković, Marko D., Barry, Paul, Rajković, Predrag},
journal = {Czechoslovak Mathematical Journal},
keywords = {Narayana numbers; Hankel transform; orthogonal polynomials; Narayana numbers; Hankel transform; orthogonal polynomials},
language = {eng},
number = {1},
pages = {39-57},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Closed-form expression for Hankel determinants of the Narayana polynomials},
url = {http://eudml.org/doc/246667},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Petković, Marko D.
AU - Barry, Paul
AU - Rajković, Predrag
TI - Closed-form expression for Hankel determinants of the Narayana polynomials
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 39
EP - 57
AB - We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.
LA - eng
KW - Narayana numbers; Hankel transform; orthogonal polynomials; Narayana numbers; Hankel transform; orthogonal polynomials
UR - http://eudml.org/doc/246667
ER -
References
top- Barry, P., On integer-sequences-based constructions of generalized Pascal triangles, J. Integer Seq. 59 (2006), Article 06.2.4. Electronic only. (2006) MR2217230
- Barry, P., Hennessy, A., Notes on a family of Riordan arrays and associated integer Hankel transforms, J. Integer Seq. 12 (2009), Article ID 09.5.3. Electronic only. (2009) Zbl1201.11034MR2520842
- Brändén, P., 10.1016/j.disc.2003.07.006, Discrete Math. 281 (2004), 67-81. (2004) MR2047757DOI10.1016/j.disc.2003.07.006
- Brualdi, R. A., Kirkland, S., 10.1016/j.jctb.2005.02.001, J. Comb. Theory Ser. B 94 (2005), 334-351. (2005) Zbl1066.05009MR2145518DOI10.1016/j.jctb.2005.02.001
- Chamberland, M., French, C., Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10 (2007). (2007) Zbl1116.11009MR2268452
- Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach New York (1978). (1978) Zbl0389.33008MR0481884
- Cvetković, A., Rajković, P. M., Ivković, M., Catalan Numbers, the Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002). (2002) Zbl1041.11014MR1919940
- Eğecioğlu, O., Redmond, T., Ryavec, C., 10.37236/730, Electron. J. Comb. 15, #R6 (2008). (2008) Zbl1206.05009MR2368911DOI10.37236/730
- Eğecioğlu, O., Redmond, T., Ryavec, C., 10.1016/j.jcta.2009.03.016, J. Comb. Theory Ser. A 117 (2010), 77-103. (2010) Zbl1227.05031MR2557881DOI10.1016/j.jcta.2009.03.016
- Armas, M. Garcia, Sethuraman, B. A., A note on the Hankel transform of the central binomial coefficients, J. Integer Seq. 11 (2008), Article ID 08.5.8. (2008) MR2465389
- Gautschi, W., 10.1017/S0962492900002622, In: Acta Numerica Vol. 5 A. Iserles Cambridge University Press Cambridge (1996), 45-119. (1996) Zbl0871.65011MR1624591DOI10.1017/S0962492900002622
- Gautschi, W., Orthogonal Polynomials. Computation and Approximation, Oxford University Press Oxford (2004). (2004) Zbl1130.42300MR2061539
- Ismail, M. E. H., 10.1016/j.cam.2004.01.042, J. Comput. Appl. Math. 178 (2005), 255-266. (2005) Zbl1083.15011MR2127884DOI10.1016/j.cam.2004.01.042
- Junod, A., 10.1016/S0723-0869(03)80010-5, Expo. Math. 21 (2003), 63-74. (2003) Zbl1153.15304MR1955218DOI10.1016/S0723-0869(03)80010-5
- Krattenthaler, C., 10.1016/j.laa.2005.06.042, Linear Algebra Appl. 411 (2005), 68-166. (2005) Zbl1079.05008MR2178686DOI10.1016/j.laa.2005.06.042
- Lang, W., 10.1016/S0377-0427(97)00240-9, J. Comput. Appl. Math. 89 (1998), 237-256. (1998) Zbl0910.30003MR1626522DOI10.1016/S0377-0427(97)00240-9
- Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), Article 01.1.5. Electronic only. (2001) Zbl0978.15022MR1848942
- Liu, L. L., Wang, Y., 10.1016/j.aam.2006.02.003, Adv. Appl. Math. 38 (2007), 542-560. (2007) Zbl1123.05009MR2311051DOI10.1016/j.aam.2006.02.003
- MacMahon, P. A., Combinatorial Analysis, Vols. 1 and 2, Cambridge University Press Cambridge (1915), 1916 reprinted by Chelsea, 1960.
- Mansour, T., Sun, Y., 10.1016/j.disc.2008.12.006, Discrete Math. 309 (2009), 4079-4088. (2009) Zbl1191.05016MR2537400DOI10.1016/j.disc.2008.12.006
- Narayana, T. V., Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités, C. R. Acad. Sci. 240 (1955), 1188-1189 French. (1955) Zbl0064.12705MR0070648
- Rajković, P. M., Petković, M. D., Barry, P., 10.1080/10652460601092303, Integral Transforms Spec. Funct. 18 (2007), 285-296. (2007) Zbl1127.11017MR2319589DOI10.1080/10652460601092303
- Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, available at http://www.research.att.com/ {njas/sequences} Zbl1159.11327
- Sulanke, R. A., 10.37236/1518, Electron. J. Comb. 7 (2000), #R40. (2000) Zbl0953.05006MR1779937DOI10.37236/1518
- Sulanke, R. A., 10.1016/S0378-3758(01)00192-6, J. Statist. Plann. Inference 101 (2002), 311-326. (2002) Zbl1001.05009MR1878867DOI10.1016/S0378-3758(01)00192-6
- Xin, G., 10.1016/j.aam.2008.04.003, Adv. Appl. Math. 42 (2009), 152-156. (2009) Zbl1169.05304MR2493974DOI10.1016/j.aam.2008.04.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.