The growth of Dirichlet series
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 29-38
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGu, Zhendong, and Sun, Daochun. "The growth of Dirichlet series." Czechoslovak Mathematical Journal 62.1 (2012): 29-38. <http://eudml.org/doc/246707>.
@article{Gu2012,
abstract = {We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.},
author = {Gu, Zhendong, Sun, Daochun},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet series; order; abscissa of convergence; Dirichlet series; abscissa of convergence},
language = {eng},
number = {1},
pages = {29-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The growth of Dirichlet series},
url = {http://eudml.org/doc/246707},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Gu, Zhendong
AU - Sun, Daochun
TI - The growth of Dirichlet series
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 29
EP - 38
AB - We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.
LA - eng
KW - Dirichlet series; order; abscissa of convergence; Dirichlet series; abscissa of convergence
UR - http://eudml.org/doc/246707
ER -
References
top- Blambert, M., 10.24033/asens.1115, Ann. Sci. Éc. Norm. Supér, III. Sér. 79 (1962), 353-375 French. (1962) Zbl0111.27302MR0179358DOI10.24033/asens.1115
- Bohr, H., Collected Mathematical Works, Copenhagen (1952), 992. (1952) Zbl0049.00105
- Knopp, K., 10.1007/BF01574830, Math. Z. 54 (1951), 291-296 German. (1951) MR0042539DOI10.1007/BF01574830
- Mandelbrojt, S., Séries de Dirichlet, Principle et Méthodes, Paris, Gauthier-Villars (1969), 165 French. (1969) Zbl0207.07201MR0259079
- Izumi, S., 10.4099/jjm1924.6.0_199, Japanese Journ. of Math. 6 (1929), 199-204. (1929) DOI10.4099/jjm1924.6.0_199
- Ritt, J. F., 10.1021/ja01388a009, Amer. J. 50 (1928), 73-86. (1928) MR1506655DOI10.1021/ja01388a009
- Sugimura, K., 10.1007/BF01180529, M. Z. 29 (1928), 264-277 German. (1928) DOI10.1007/BF01180529
- Tanaka, C., 10.2748/tmj/1178245352, Tôhoku Math. J., II. Ser. 5 (1953), 67-78. (1953) Zbl0053.37502MR0057320DOI10.2748/tmj/1178245352
- Valiron, G., Sur la croissance du module maximum des séries entières, S. M. F. Bull. 44 (1916), 45-64 French. (1916) MR1504749
- Valiron, G., Sur l'abscisse de convergence des séries de Dirichlet, S. M. F. Bull. 52 (1924), 166-174 French. (1924) MR1504844
- Valiron, G., 10.1073/pnas.20.3.211, Proc. Natl. Acad. Sci. USA 20 (1934), 211-215. (1934) Zbl0009.02503DOI10.1073/pnas.20.3.211
- Valiron, G., Théorie Générale des Séries de Dirichlet, Paris, Gauthier-Villars (Mémorial des sciences mathématiques, fasc. 17) (1926), French pp. 56. (1926)
- Yu, Ch.-Y., Dirichlet series, Analytic functions of one complex variable, Contemp. Math., 48, Amer. Math. Soc., Providence, RI (1985), 201-216. (1985) MR0838106
- Yu, Ch.-Y., 10.24033/asens.986, Ann. Sci. Éc. Norm. Supér, III. Sér. 68 (1951), 65-104 French. (1951) Zbl0045.03802MR0041223DOI10.24033/asens.986
- Yu, J.-R., Some properties of random Dirichlet series, Acta Math. Sin. 21 (1978), 97-118 Chinese. (1978) Zbl0386.60044MR0507192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.