Robust median estimator for generalized linear models with binary responses

Tomáš Hobza; Leandro Pardo; Igor Vajda

Kybernetika (2012)

  • Volume: 48, Issue: 4, page 768-794
  • ISSN: 0023-5954

Abstract

top
The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.

How to cite

top

Hobza, Tomáš, Pardo, Leandro, and Vajda, Igor. "Robust median estimator for generalized linear models with binary responses." Kybernetika 48.4 (2012): 768-794. <http://eudml.org/doc/246708>.

@article{Hobza2012,
abstract = {The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.},
author = {Hobza, Tomáš, Pardo, Leandro, Vajda, Igor},
journal = {Kybernetika},
keywords = {generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness; generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness},
language = {eng},
number = {4},
pages = {768-794},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust median estimator for generalized linear models with binary responses},
url = {http://eudml.org/doc/246708},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Hobza, Tomáš
AU - Pardo, Leandro
AU - Vajda, Igor
TI - Robust median estimator for generalized linear models with binary responses
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 768
EP - 794
AB - The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.
LA - eng
KW - generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness; generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness
UR - http://eudml.org/doc/246708
ER -

References

top
  1. G. Adimari, L. Ventura, 10.1016/S0167-7152(01)00157-2, Statist. Probab. Lett. 55 (2001), 4, 413-419. Zbl0994.62062MR1877646DOI10.1016/S0167-7152(01)00157-2
  2. A. M. Bianco, V. J. Yohai, Robust estimation in the logistic regression model., In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994), pp. 17-34. Lecture Notes in Statist. 109 Springer, New York 1996. Zbl0839.62030MR1491394
  3. C. Croux, G. Haesbroeck, 10.1016/S0167-9473(03)00042-2, Computat. Statist. Data Anal. 44 (2003), 273-295. MR2020151DOI10.1016/S0167-9473(03)00042-2
  4. J. E. Dennis, Jr., R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations., Prentice-Hall, Englewood Cliffs, New Jersey 1983. Zbl0847.65038MR0702023
  5. D. Gervini, 10.1016/j.jspi.2004.02.006, J. Statist. Plann. Inference 131 (2005), 297-311. Zbl1061.62036MR2139374DOI10.1016/j.jspi.2004.02.006
  6. F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions., Wiley, New York 1986. Zbl0733.62038MR0829458
  7. T. Hobza, L. Pardo, I. Vajda, Median Estimators in Generalized Logistic Regression., Research Report DAR-UTIA 2005/40. Institute of Information Theory, Prague 2005 (available at http://dar.site.cas.cz/?publication=1007). 
  8. T. Hobza, L. Pardo, I. Vajda, Robust Median Estimators in Logistic Regression., Research Report DAR-UTIA 2006/31. Institute of Information Theory, Prague 2006 (available at http://dar.site.cas.cz/?publication=1089). 
  9. T. Hobza, L. Pardo, I. Vajda, 10.1016/j.jspi.2008.02.010, J. Statist. Plann. Inference 138 (2008), 3822-3840. Zbl1146.62015MR2455970DOI10.1016/j.jspi.2008.02.010
  10. J. Jurečková, P. K. Sen, Robust Statistical Procedures., Wiley, New York 1996. Zbl0862.62032MR1387346
  11. N. Kordzakhia, G. D. Mishra, L. Reiersølmoen, 10.1016/S0378-3758(00)00312-8, J. Statist. Plann. Inference 98 (2001), 211-223. MR1860395DOI10.1016/S0378-3758(00)00312-8
  12. F. Liese, I. Vajda, 10.1023/A:1023027929079, Appl. Math. 44 (1999), 245-270. Zbl1060.62029MR1698768DOI10.1023/A:1023027929079
  13. F. Liese, I. Vajda, A general asymptotic theory of M -estimators I., Math. Methods Statist. 12 (2003) 454-477. MR2054158
  14. F. Liese, I. Vajda, A general asymptotic theory of M -estimators II., Math. Methods Statist. 13 (2004) 82-95. Zbl1185.62053MR2078314
  15. P. McCullagh, J. A. Nelder, Generalized Linear Models., Chapman and Hall, London 1989. Zbl0744.62098MR0727836
  16. M. L. Menéndez, L. Pardo, M. C. Pardo, 10.1016/j.jmva.2008.02.011, J. Multivariate Anal. 99 (2009), 10, 2265-2284. Zbl1154.62051MR2463388DOI10.1016/j.jmva.2008.02.011
  17. J. Moré, G. Burton, H. Kenneth, User Guide for MINPACK-1., Argonne National Laboratory Report ANL-80-74, Argonne 1980. 
  18. S. Morgenthaler, 10.1093/biomet/79.4.747, Biometrika 79 (1992), 747-754. Zbl0850.62562DOI10.1093/biomet/79.4.747
  19. J. Nagler, 10.2307/2111343, Amer. J. Political Sci. 38 (1994), 1, 230-255. DOI10.2307/2111343
  20. D. Pregibon, 10.2307/2530463, Biometrics 38 (1982), 485-498. DOI10.2307/2530463
  21. R. L. Prentice, A generalization of the probit and logit methods for dose-response curves., Biometrika 32 (1976), 761-768. 
  22. P. J. Rousseeuw, A. Christmann, 10.1016/S0167-9473(02)00304-3, Comput. Statist. Data Anal. 43 (2003), 315-332. MR1996815DOI10.1016/S0167-9473(02)00304-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.