Robust median estimator for generalized linear models with binary responses
Tomáš Hobza; Leandro Pardo; Igor Vajda
Kybernetika (2012)
- Volume: 48, Issue: 4, page 768-794
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHobza, Tomáš, Pardo, Leandro, and Vajda, Igor. "Robust median estimator for generalized linear models with binary responses." Kybernetika 48.4 (2012): 768-794. <http://eudml.org/doc/246708>.
@article{Hobza2012,
abstract = {The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.},
author = {Hobza, Tomáš, Pardo, Leandro, Vajda, Igor},
journal = {Kybernetika},
keywords = {generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness; generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness},
language = {eng},
number = {4},
pages = {768-794},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust median estimator for generalized linear models with binary responses},
url = {http://eudml.org/doc/246708},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Hobza, Tomáš
AU - Pardo, Leandro
AU - Vajda, Igor
TI - Robust median estimator for generalized linear models with binary responses
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 768
EP - 794
AB - The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.
LA - eng
KW - generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness; generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness
UR - http://eudml.org/doc/246708
ER -
References
top- G. Adimari, L. Ventura, 10.1016/S0167-7152(01)00157-2, Statist. Probab. Lett. 55 (2001), 4, 413-419. Zbl0994.62062MR1877646DOI10.1016/S0167-7152(01)00157-2
- A. M. Bianco, V. J. Yohai, Robust estimation in the logistic regression model., In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994), pp. 17-34. Lecture Notes in Statist. 109 Springer, New York 1996. Zbl0839.62030MR1491394
- C. Croux, G. Haesbroeck, 10.1016/S0167-9473(03)00042-2, Computat. Statist. Data Anal. 44 (2003), 273-295. MR2020151DOI10.1016/S0167-9473(03)00042-2
- J. E. Dennis, Jr., R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations., Prentice-Hall, Englewood Cliffs, New Jersey 1983. Zbl0847.65038MR0702023
- D. Gervini, 10.1016/j.jspi.2004.02.006, J. Statist. Plann. Inference 131 (2005), 297-311. Zbl1061.62036MR2139374DOI10.1016/j.jspi.2004.02.006
- F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions., Wiley, New York 1986. Zbl0733.62038MR0829458
- T. Hobza, L. Pardo, I. Vajda, Median Estimators in Generalized Logistic Regression., Research Report DAR-UTIA 2005/40. Institute of Information Theory, Prague 2005 (available at http://dar.site.cas.cz/?publication=1007).
- T. Hobza, L. Pardo, I. Vajda, Robust Median Estimators in Logistic Regression., Research Report DAR-UTIA 2006/31. Institute of Information Theory, Prague 2006 (available at http://dar.site.cas.cz/?publication=1089).
- T. Hobza, L. Pardo, I. Vajda, 10.1016/j.jspi.2008.02.010, J. Statist. Plann. Inference 138 (2008), 3822-3840. Zbl1146.62015MR2455970DOI10.1016/j.jspi.2008.02.010
- J. Jurečková, P. K. Sen, Robust Statistical Procedures., Wiley, New York 1996. Zbl0862.62032MR1387346
- N. Kordzakhia, G. D. Mishra, L. Reiersølmoen, 10.1016/S0378-3758(00)00312-8, J. Statist. Plann. Inference 98 (2001), 211-223. MR1860395DOI10.1016/S0378-3758(00)00312-8
- F. Liese, I. Vajda, 10.1023/A:1023027929079, Appl. Math. 44 (1999), 245-270. Zbl1060.62029MR1698768DOI10.1023/A:1023027929079
- F. Liese, I. Vajda, A general asymptotic theory of -estimators I., Math. Methods Statist. 12 (2003) 454-477. MR2054158
- F. Liese, I. Vajda, A general asymptotic theory of -estimators II., Math. Methods Statist. 13 (2004) 82-95. Zbl1185.62053MR2078314
- P. McCullagh, J. A. Nelder, Generalized Linear Models., Chapman and Hall, London 1989. Zbl0744.62098MR0727836
- M. L. Menéndez, L. Pardo, M. C. Pardo, 10.1016/j.jmva.2008.02.011, J. Multivariate Anal. 99 (2009), 10, 2265-2284. Zbl1154.62051MR2463388DOI10.1016/j.jmva.2008.02.011
- J. Moré, G. Burton, H. Kenneth, User Guide for MINPACK-1., Argonne National Laboratory Report ANL-80-74, Argonne 1980.
- S. Morgenthaler, 10.1093/biomet/79.4.747, Biometrika 79 (1992), 747-754. Zbl0850.62562DOI10.1093/biomet/79.4.747
- J. Nagler, 10.2307/2111343, Amer. J. Political Sci. 38 (1994), 1, 230-255. DOI10.2307/2111343
- D. Pregibon, 10.2307/2530463, Biometrics 38 (1982), 485-498. DOI10.2307/2530463
- R. L. Prentice, A generalization of the probit and logit methods for dose-response curves., Biometrika 32 (1976), 761-768.
- P. J. Rousseeuw, A. Christmann, 10.1016/S0167-9473(02)00304-3, Comput. Statist. Data Anal. 43 (2003), 315-332. MR1996815DOI10.1016/S0167-9473(02)00304-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.