Page 1 Next

Displaying 1 – 20 of 28

Showing per page

A Bayesian estimate of the risk of tick-borne diseases

Marek Jiruše, Josef Machek, Viktor Beneš, Petr Zeman (2004)

Applications of Mathematics

The paper considers the problem of estimating the risk of a tick-borne disease in a given region. A large set of epidemiological data is evaluated, including the point pattern of collected cases, the population map and covariates, i.e. explanatory variables of geographical nature, obtained from GIS. The methodology covers the choice of those covariates which influence the risk of infection most. Generalized linear models are used and AIC criterion yields the decision. Further, an empirical Bayesian...

A model and application of binary random sequence with probabilities depending on history

Petr Volf, Tomáš Kouřim (2024)

Kybernetika

This paper presents a model of binary random sequence with probabilities depending on previous sequence values as well as on a set of covariates. Both these dependencies are expressed via the logistic regression model, such a choice enables an easy and reliable model parameters estimation. Further, a model with time-depending parameters is considered and method of solution proposed. The main objective is then the application dealing with both artificial and real data cases, illustrating the method...

Algebraic structureof step nesting designs

Célia Fernandes, Paulo Ramos, João Tiago Mexia (2010)

Discussiones Mathematicae Probability and Statistics

Step nesting designs may be very useful since they require fewer observations than the usual balanced nesting models. The number of treatments in balanced nesting design is the product of the number of levels in each factor. This number may be too large. As an alternative, in step nesting designs the number of treatments is the sum of the factor levels. Thus these models lead to a great economy and it is easy to carry out inference. To study the algebraic structure of step nesting designs we introduce...

Análisis de duración mediante un modelo lineal generalizado semiparamétrico.

Jesús Orbe (2001)

Qüestiió

Aitkin y Clayton (1980) proponen el análisis de modelos de duración mediante modelos lineales generalizados. En este trabajo extendemos esta metodología permitiendo que el efecto de alguna de las variables explicativas pueda no ser especificado. Así, el modelo propuesto es un modelo lineal generalizado semiparamétrico, con una componente paramétrica donde se especifica la forma funcional concreta del efecto de las variables explicativas sobre la duración, y una componente no paramétrica donde recogemos...

Asymptotic properties of the growth curve model with covariance components

Ivan Žežula (1997)

Applications of Mathematics

We consider a multivariate regression (growth curve) model of the form Y = X B Z + ε , E ε = 0 , var ( vec ε ) = W Σ , where W = i = 1 k θ i V i and θ i ’s are unknown scalar covariance components. In the case of replicated observations, we derive the explicit form of the locally best estimators of the covariance components under normality and asymptotic confidence ellipsoids for certain linear functions of the first order parameters { B i j } estimating simultaneously the first and the second order parameters.

Bias correction on censored least squares regression models

Jesus Orbe, Vicente Núñez-Antón (2012)

Kybernetika

This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with...

Factorial experimental designs and generalized linear models.

Simplice Dossou-Gbété, Walter Tinsson (2005)

SORT

This paper deals with experimental designs adapted to a generalized linear model. We introduce a special link function for which the orthogonality of design matrix obtained under Gaussian assumption is preserved. We investigate by simulation some of its properties.

Generalized F tests and selective generalized F tests for orthogonal and associated mixed models

Célia Nunes, Iola Pinto, João Tiago Mexia (2008)

Discussiones Mathematicae Probability and Statistics

The statistics of generalized F tests are quotients of linear combinations of independent chi-squares. Given a parameter, θ, for which we have a quadratic unbiased estimator, θ̃, the test statistic, for the hypothesis of nullity of that parameter, is the quotient of the positive part by the negative part of such estimator. Using generalized polar coordinates it is possible to obtain selective generalized F tests which are especially powerful for selected families of alternatives. We build both classes...

Inference for random effects in prime basis factorials using commutative Jordan algebras

Vera M. Jesus, Paulo Canas Rodrigues, João Tiago Mexia (2007)

Discussiones Mathematicae Probability and Statistics

Commutative Jordan algebras are used to drive an highly tractable framework for balanced factorial designs with a prime number p of levels for their factors. Both fixed effects and random effects models are treated. Sufficient complete statistics are obtained and used to derive UMVUE for the relevant parameters. Confidence regions are obtained and it is shown how to use duality for hypothesis testing.

Likelihood for random-effect models (with discussion).

Youngjo Lee, John A. Nelder (2005)

SORT

For inferences from random-effect models Lee and Nelder (1996) proposed to use hierarchical likelihood (h-likelihood). It allows influence from models that may include both fixed and random parameters. Because of the presence of unobserved random variables h-likelihood is not a likelihood in the Fisherian sense. The Fisher likelihood framework has advantages such as generality of application, statistical and computational efficiency. We introduce an extended likelihood framework and discuss why...

Locally weighted neural networks for an analysis of the biosensor response

Romas Baronas, Feliksas Ivanauskas, Romualdas Maslovskis, Marijus Radavičius, Pranas Vaitkus (2007)

Kybernetika

This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining...

M -estimators of structural parameters in pseudolinear models

Friedrich Liese, Igor Vajda (1999)

Applications of Mathematics

Real valued M -estimators θ ^ n : = min 1 n ρ ( Y i - τ ( θ ) ) in a statistical model with observations Y i F θ 0 are replaced by p -valued M -estimators β ^ n : = min 1 n ρ ( Y i - τ ( u ( z i T β ) ) ) in a new model with observations Y i F u ( z i t β 0 ) , where z i p are regressors, β 0 p is a structural parameter and u : a structural function of the new model. Sufficient conditions for the consistency of β ^ n are derived, motivated by the sufficiency conditions for the simpler “parent estimator” θ ^ n . The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If...

Currently displaying 1 – 20 of 28

Page 1 Next