Almost g ˜ α -closed functions and separation axioms

O. Ravi; S. Ganesan; R. Latha

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 3, page 275-291
  • ISSN: 0862-7959

Abstract

top
We introduce a new class of functions called almost g ˜ α -closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost g ˜ α -closed continuous surjections.

How to cite

top

Ravi, O., Ganesan, S., and Latha, R.. "Almost $\tilde{g}_\alpha $-closed functions and separation axioms." Mathematica Bohemica 137.3 (2012): 275-291. <http://eudml.org/doc/246740>.

@article{Ravi2012,
abstract = {We introduce a new class of functions called almost $\tilde\{g\}_\{\alpha \}$-closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost $\tilde\{g\}_\{\alpha \}$-closed continuous surjections.},
author = {Ravi, O., Ganesan, S., Latha, R.},
journal = {Mathematica Bohemica},
keywords = {topological space; $\tilde\{g\}$-closed set; $\tilde\{g\}_\{\alpha \}$-closed set; $\alpha g$-closed set; topological space; -closed set; -closed set; -closed set},
language = {eng},
number = {3},
pages = {275-291},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Almost $\tilde\{g\}_\alpha $-closed functions and separation axioms},
url = {http://eudml.org/doc/246740},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Ravi, O.
AU - Ganesan, S.
AU - Latha, R.
TI - Almost $\tilde{g}_\alpha $-closed functions and separation axioms
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 275
EP - 291
AB - We introduce a new class of functions called almost $\tilde{g}_{\alpha }$-closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost $\tilde{g}_{\alpha }$-closed continuous surjections.
LA - eng
KW - topological space; $\tilde{g}$-closed set; $\tilde{g}_{\alpha }$-closed set; $\alpha g$-closed set; topological space; -closed set; -closed set; -closed set
UR - http://eudml.org/doc/246740
ER -

References

top
  1. Andrijevic, D., Some properties of the topology of α -sets, Mat. Vesn. 36 (1984), 1-10. (1984) Zbl0546.54003MR0880637
  2. Carnahan, D., Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. of Arkansas (1973). (1973) MR2623205
  3. Devi, R., Balachandran, K., Maki, H., On generalized α -continuous maps and α -generalized continuous maps, Far East J. Math. Sci. (1997), 1-15. (1997) 
  4. Frolík, Z., Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. 11 (1961), 381-385. (1961) MR0133098
  5. Ganster, M., On strongly s -regular spaces, Glas. Mat., III. Ser. 25 (1990), 195-201. (1990) Zbl0733.54012MR1108963
  6. Greenwood, S., Reilly, I. L., On feebly closed mappings, Indian J. Pure Appl. Math. 17 (1986), 1101-1105. (1986) Zbl0604.54012MR0864149
  7. Jafari, S., Noiri, T., Rajesh, N., Thivagar, M. L., Another generalization of closed sets, Kochi J. Math. 3 (2008), 25-38. (2008) Zbl1148.54304MR2408589
  8. Jafari, S., Thivagar, M. L., Paul, Nirmala Rebecca, Remarks on g ˜ α -closed sets in topological spaces, Int. Math. Forum 5 (2010), 1167-1178. (2010) Zbl1207.54030MR2652960
  9. Jankovic, D. S., Konstadilaki-Savvopoulou, Ch., On α -continuous functions, Math. Bohem. 117 (1992), 259-270. (1992) Zbl0802.54005MR1184539
  10. Levine, N., 10.1007/BF02843888, Rend. Circ. Mat. Palermo, II. Ser. 19 (1970), 89-96. (1970) Zbl0231.54001MR0305341DOI10.1007/BF02843888
  11. Levine, N., 10.2307/2312781, Am. Math. Mon. 70 (1963), 36-41. (1963) Zbl0113.16304MR0166752DOI10.2307/2312781
  12. Long, P. E., Herrington, L. L., Basic properties of regular-closed functions, Rend Circ. Mat. Palermo, II. Ser. 27 (1978), 20-28. (1978) Zbl0416.54005MR0542230
  13. Maki, H., Devi, R., Balachandran, K., Generalized α -closed sets in topology, Bull. Fukuoka Univ. Educ., Part III 42 (1993), 13-21. (1993) Zbl0888.54005
  14. Maki, H., Devi, R., Balachandran, K., Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci., Kochi Univ., Ser. A 15 (1994), 51-63. (1994) Zbl0821.54002MR1262966
  15. Maki, H., Rao, K. Chandrasekhara, Gani, A. Nagoor, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci. 49 (1999), 17-29. (1999) MR1696955
  16. Malghan, S. R., Generalized closed maps, J. Karnatak Univ., Sci. 27 (1982), 82-88. (1982) Zbl0578.54008MR0773568
  17. Mashhour, A. S., Hasanein, I. A., El-Deeb, S. N., 10.1007/BF01961309, Acta Math. Hung. 41 (1983), 213-218. (1983) Zbl0534.54006MR0703734DOI10.1007/BF01961309
  18. Min, W. K., 10.4134/CKMS.2010.25.2.251, Commun. Korean Math. Soc. 25 (2010), 251-256. (2010) Zbl1211.54030MR2662974DOI10.4134/CKMS.2010.25.2.251
  19. Min, W. K., Kim, Y. K., On weak M -semicontinuity on spaces with minimal structures, J. Chungcheong Math. Soc. 23 (2010), 223-229. (2010) 
  20. Njastad, O., 10.2140/pjm.1965.15.961, Pac. J. Math. 15 (1965), 961-970. (1965) Zbl0137.41903MR0195040DOI10.2140/pjm.1965.15.961
  21. Noiri, T., Almost-closed images of countably paracompact spaces, Commentat. Math. 20 (1978), 423-426. (1978) Zbl0398.54007MR0519378
  22. Noiri, T., Mildly normal spaces and some functions, Kyungpook Math. J. 36 (1996), 183-190. (1996) Zbl0873.54016MR1396023
  23. Noiri, T., 10.1023/A:1026404730639, Acta Math. Hung. 82 (1999), 193-205. (1999) Zbl0924.54020MR1674100DOI10.1023/A:1026404730639
  24. Noiri, T., Popa, V., A unified theory of closed functions, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49 (2006), 371-382. (2006) Zbl1119.54304MR2281517
  25. Palaniappan, N., Rao, K. C., Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211-219. (1993) Zbl0794.54002MR1253673
  26. Popa, V., Noiri, T., On M -continuous functions, Anal. Univ. ``Dunarea de Jos'', Galati, Ser. Mat. Fiz. Mecan. Teor. Fasc. II. 18 (2000), 31-41. (2000) MR2314773
  27. Popa, V., Noiri, T., On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci., Kochi Univ., Ser. A 22 (2001), 31-41. (2001) Zbl0972.54011MR1822060
  28. Porter, J. R., Woods, R. G., Extensions and Absolutes of Hausdorff spaces, Springer, New York (1988). (1988) Zbl0652.54016MR0918341
  29. Ravi, O., Ganesan, S., Chandrasekar, S., Almost α g s -closed functions and separation axioms, Bulletin of Mathematical Analysis and Applications 3 (2011), 165-177. (2011) MR2792611
  30. Rosas, E., Rajesh, N., Carpintero, C., Some new types of open and closed sets in minimal structures. II, Int. Math. Forum 4 (2009), 2185-2198. (2009) Zbl1191.54003MR2563392
  31. Singal, M. K., Arya, S. P., On almost-regular spaces, Glas. Mat., III. Ser. 4 (1969), 89-99. (1969) Zbl0169.24902MR0243483
  32. Singal, M. K., Arya, S. P., Almost normal and almost completely regular spaces, Glas. Mat., III. Ser. 5 (1970), 141-152. (1970) Zbl0197.18901MR0275354
  33. Singal, M. K., Singal, A. R., Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63-73. (1968) Zbl0191.20802MR0261569
  34. Singal, M. K., Singal, A. R., Mildly normal spaces, Kyungpook Math. J. 13 (1973), 27-31. (1973) Zbl0266.54006MR0362215
  35. Kumar, M. K. R. S. Veera, g ^ -closed sets in topological spaces, Bull. Allahabad Math. Soc. 18 (2003), 99-112. (2003) MR2061436
  36. Kumar, M. K. R. S. Veera, Between g * -closed sets and g -closed sets, Antarct. J. Math. 3 (2006), 43-65. (2006) MR2296082
  37. Kumar, M. K. R. S. Veera, g -semi-closed sets in topological spaces, Antarct. J. Math. 2 (2005), 201-222. (2005) MR2203685
  38. Wang, Guojun, On S-closed spaces, Acta Math. Sin. 24 (1981), 55-63. (1981) Zbl0503.54031MR0617426
  39. Yoshimura, M., Miwa, T., Noiri, T., A generalization of regular closed and g -closed functions, Stud. Cercet. Mat. 47 (1995), 353-358. (1995) Zbl0854.54020MR1682872
  40. Zenor, P., On countable paracompactness and normality, Pr. Mat. 13 (1969), 23-32. (1969) Zbl0242.54016MR0248724

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.