On α -continuous functions

Dragan S. Janković; Ch. Konstadilaki-Savvopoulou

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 3, page 259-270
  • ISSN: 0862-7959

Abstract

top
Classes of functions continuous in various senses, in particular θ -continuous, α -continuous, feeblz continuous a.o., and relations between the classes, are studied.

How to cite

top

Janković, Dragan S., and Konstadilaki-Savvopoulou, Ch.. "On $\alpha $-continuous functions." Mathematica Bohemica 117.3 (1992): 259-270. <http://eudml.org/doc/29441>.

@article{Janković1992,
abstract = {Classes of functions continuous in various senses, in particular $\theta $-continuous, $\alpha $-continuous, feeblz continuous a.o., and relations between the classes, are studied.},
author = {Janković, Dragan S., Konstadilaki-Savvopoulou, Ch.},
journal = {Mathematica Bohemica},
keywords = {$\theta $-continuous functions; $\alpha $-continuous functions; feebly continuous functions; nearly feebly open functions; feeble continuity; $\alpha $-continuity; $\theta $-continuity; weak continuity; $\alpha $-irresoluteness; theta-continuous functions; alpha-continuous functions; feebly continuous functions; nearly feebly open functions; feeble continuity; - continuity; -continuity; weak continuity; -irresoluteness},
language = {eng},
number = {3},
pages = {259-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\alpha $-continuous functions},
url = {http://eudml.org/doc/29441},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Janković, Dragan S.
AU - Konstadilaki-Savvopoulou, Ch.
TI - On $\alpha $-continuous functions
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 259
EP - 270
AB - Classes of functions continuous in various senses, in particular $\theta $-continuous, $\alpha $-continuous, feeblz continuous a.o., and relations between the classes, are studied.
LA - eng
KW - $\theta $-continuous functions; $\alpha $-continuous functions; feebly continuous functions; nearly feebly open functions; feeble continuity; $\alpha $-continuity; $\theta $-continuity; weak continuity; $\alpha $-irresoluteness; theta-continuous functions; alpha-continuous functions; feebly continuous functions; nearly feebly open functions; feeble continuity; - continuity; -continuity; weak continuity; -irresoluteness
UR - http://eudml.org/doc/29441
ER -

References

top
  1. D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32. (1986) Zbl0604.54002
  2. H. H. Corson, E. Michael, 10.1215/ijm/1256059678, Illinois J.Math. 8 (1964), 351-360. (1964) Zbl0127.13203MR0170324DOI10.1215/ijm/1256059678
  3. S. G. Crossley, S. K. Hildebrand, 10.4064/fm-74-3-233-254, Fund. Math. 14 (1972), 233-254. (1972) Zbl0206.51501MR0301690DOI10.4064/fm-74-3-233-254
  4. R. F. Dickman, Jr. J. R. Porter, and L. R. Rubin, 10.2140/pjm.1981.94.277, Pacific J. Math. 94 (1981), 277-295. (1981) MR0628580DOI10.2140/pjm.1981.94.277
  5. J. Doboš, A note on the invariance of Baire spaces under mappings, Časopis pěst. mat. 108 (1983), 409-411. (1983) MR0727538
  6. S. Fomin, 10.2307/1968976, Ann. Math. 44 (1943), 471-480. (1943) Zbl0061.39601MR0008686DOI10.2307/1968976
  7. Z. Frolík, Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. 11 (1961), 381-385. (1961) MR0133098
  8. T. R. Hamlett, D. Rose, * -topological properties, Internat. J. of Math. and Math. Sci., to appear. MR1068014
  9. R. C. Haworth, R. A. McCoy, Baire spaces, Dissert. Math. 141 (1977), 1-73. (1977) Zbl0344.54001MR0431104
  10. D. S. Janković, S. K. Hildebrand, A note on semihomeomorphisms, Math. Cronicle 16 (1987), 65-68. (1987) MR0944619
  11. K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966. (1966) Zbl0158.40901MR0217751
  12. N. Levine, 10.2307/2311363, Amer. Math. Monthly 68 (1961), 44-46. (1961) Zbl0100.18601MR0126252DOI10.2307/2311363
  13. N. Levine, 10.1080/00029890.1963.11990039, Amer. Math. Monthly 10 (1963), 36-41. (1963) Zbl0113.16304MR0166752DOI10.1080/00029890.1963.11990039
  14. S. N. Maheshwari, S. S. Thakur, On α -irresolute mappings, Tamkang J. Math. 11 (1980), 209-214. (1980) MR0696921
  15. A. S. Mashhour I. A. Hasanein S. N. El-Deeb, 10.1007/BF01961309, Acta Math. Hung. 41 (1983), 213-218. (1983) MR0703734DOI10.1007/BF01961309
  16. J. Mioduszewski, and L. Rudolf, H-closed and extremally disconnected Hausdorff spaces, Dissert. Math. 66 (1969), 1-55. (1969) MR0256353
  17. T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259-306. (1988) MR0995972
  18. O. Njastad, 10.2140/pjm.1965.15.961, Pacific J. Math. 15 (1965), 961-970. (1965) Zbl0137.41903MR0195040DOI10.2140/pjm.1965.15.961
  19. T. Noiri, A function which preserves connected spaces, Časopis Pěst. Mat. 101 (1982), 393-396. (1982) Zbl0511.54008MR0683820
  20. T. Noiri, On α -continuous functions, Časopis Pěst. Mat. 109(1984), 118-126. (1984) Zbl0544.54009MR0744869
  21. J. R. Porter, R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, 1988. (1988) Zbl0652.54016MR0918341
  22. V. Pták, 10.24033/bsmf.1498, Bull. Soc. Math. France 86 (1958), 41-74. (1958) MR0105606DOI10.24033/bsmf.1498
  23. I. L. Reilly, M. K. Vamanamurthy, Connectedness and strong semi-continuity, Časopis Pěst. Mat. 109 (1984), 261-265. (1984) Zbl0553.54005MR0755590
  24. L. Rudolf, 10.4064/fm-77-2-171-190, Fund. Math. 77 (1972), 171-190. (1972) Zbl0246.54014MR0320993DOI10.4064/fm-77-2-171-190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.