The Kurzweil-Henstock theory of stochastic integration
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 829-848
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topToh, Tin-Lam, and Chew, Tuan-Seng. "The Kurzweil-Henstock theory of stochastic integration." Czechoslovak Mathematical Journal 62.3 (2012): 829-848. <http://eudml.org/doc/246743>.
@article{Toh2012,
abstract = {The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.},
author = {Toh, Tin-Lam, Chew, Tuan-Seng},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic integral; Kurzweil-Henstock; convergence theorem; stochastic integral; Kurzweil-Henstock; convergence theorem},
language = {eng},
number = {3},
pages = {829-848},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Kurzweil-Henstock theory of stochastic integration},
url = {http://eudml.org/doc/246743},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Toh, Tin-Lam
AU - Chew, Tuan-Seng
TI - The Kurzweil-Henstock theory of stochastic integration
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 829
EP - 848
AB - The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.
LA - eng
KW - stochastic integral; Kurzweil-Henstock; convergence theorem; stochastic integral; Kurzweil-Henstock; convergence theorem
UR - http://eudml.org/doc/246743
ER -
References
top- Chew, T. S., Lee, P. Y., Nonabsolute integration using Vitali covers, N. Z. J. Math. 23 (1994), 25-36. (1994) Zbl0832.26005MR1279123
- Chew, T. S., Toh, T. L., Tay, J. Y., 10.14321/realanalexch.27.2.0495, Real Anal. Exch. 27 (2002), 495-514. (2002) Zbl1067.60025MR1922665DOI10.14321/realanalexch.27.2.0495
- Chung, K. L., Williams, R. J., Introduction to Stochastic Integration, 2nd edition, Birkhäuser Boston (1990). (1990) MR1102676
- Henstock, R., 10.1112/jlms/s1-30.3.273, J. Lond. Math. Soc. 30 (1955), 273-286. (1955) Zbl0066.09204MR0072968DOI10.1112/jlms/s1-30.3.273
- Henstock, R., Lectures on the Theory of Integration, World Scientific Singapore (1988). (1988) Zbl0668.28001MR0963249
- Henstock, R., The General Theory of Integration, Clarendon Press Oxford (1991). (1991) Zbl0745.26006MR1134656
- Henstock, R., 10.2307/44153722, Real Anal. Exch. 16 (1991), 460-470. (1991) Zbl0727.28013MR1112038DOI10.2307/44153722
- Hitsuda, M., Formula for Brownian partial derivatives, Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15. (1979)
- Lee, P. Y., Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press Cambridge (2000). (2000) MR1756319
- Lee, T. W., 10.1017/S144678870001692X, J. Aust. Math. Soc. 21 (1976), 64-71. (1976) Zbl0314.28009MR0435334DOI10.1017/S144678870001692X
- Marraffa, V., A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998, Matimyás Mat. 22 (1999), 73-84. (1999) MR1770168
- McShane, E. J., Stochastic Calculus and Stochastic Models, Academic Press New York (1974). (1974) Zbl0292.60090MR0443084
- Mouldowney, P., A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153, Longman Harlow (1987). (1987)
- Nualart, D., The Malliavin Calculus and Related Topics, Springer New York (1995). (1995) Zbl0837.60050MR1344217
- Nualart, D., Pardoux, E., 10.1007/BF00353876, Probab. Theory Relat. Fields 78 (1988), 535-581. (1988) Zbl0629.60061MR0950346DOI10.1007/BF00353876
- Pardoux, E., Protter, P., 10.1007/BF00390274, Probab. Theory Relat. Fields 76 (1987), 15-49. (1987) Zbl0608.60058MR0899443DOI10.1007/BF00390274
- Pop-Stojanovic, Z. R., 10.1137/0122010, SIAM J. Appl. Math. 22 (1972), 87-92. (1972) Zbl0243.60035MR0322954DOI10.1137/0122010
- Protter, P., 10.1214/aop/1176995088, Ann. Probab. 7 (1979), 276-289. (1979) Zbl0404.60062MR0525054DOI10.1214/aop/1176995088
- Protter, P., Stochastic Integration and Differential Equations, Springer New York (1990). (1990) Zbl0694.60047MR1037262
- Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, 2nd edition, Springer Berlin (1994). (1994) MR1303781
- Skorohod, A. V., On a generalisation of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233. (1975) MR0391258
- Stratonovich, R. L., 10.1137/0304028, J. SIAM Control 4 (1966), 362-371. (1966) MR0196814DOI10.1137/0304028
- Toh, T. L., Chew, T. S., A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan, World Scientific Singapore (1999), 291-299. (1999) MR1819215
- Toh, T. L., Chew, T. S., 10.1016/S0022-247X(03)00059-3, J. Math. Anal. Appl. 280 (2003), 133-147. (2003) Zbl1022.60055MR1972197DOI10.1016/S0022-247X(03)00059-3
- Toh, T. L., Chew, T. S., The non-uniform Riemann approach to multiple Itô-Wiener integral, Real Anal. Exch. 29 (2003-2004), 275-290. (2003) MR2061311
- Toh, T. L., Chew, T. S., On the Henstock-Fubini Theorem for multiple stochastic integral, Real Anal. Exch. 30 (2004-2005), 295-310. (2004) MR2127534
- Toh, T. L., Chew, T. S., 10.1016/j.mcm.2004.03.008, J. Math. Comput. Modeling 42 (2005), 139-149. (2005) MR2162393DOI10.1016/j.mcm.2004.03.008
- Toh, T. L., Chew, T. S., 10.1007/s10587-005-0052-7, Czech. Math. J. 55 (2005), 653-663. (2005) Zbl1081.26005MR2153089DOI10.1007/s10587-005-0052-7
- Toh, T. L., Chew, T. S., On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes, Math. Bohem. 130 (2005), 63-73. (2005) Zbl1112.26012MR2128359
- Toh, T. L., Chew, T. S., Henstock's version of Itô's formula, Real Anal. Exch. 35 (2009-2010), 375-3901-20. (2009) MR2683604
- Weizsäcker, H., G., G. Winkler, Stochastic Integrals: An introduction, Friedr. Vieweg & Sohn (1990). (1990) Zbl0718.60049MR1062600
- Wong, E., Zakai, M., 10.1214/aop/1176995718, Ann. Probab. 5 (1977), 770-778. (1977) Zbl0376.60060MR0448555DOI10.1214/aop/1176995718
- Xu, J. G., Lee, P. Y., Stochastic integrals of Itô and Henstock, Real Anal. Exch. 18 (1992-1993), 352-366. (1992) MR1228401
- Yeh, H., Martingales and Stochastic Analysis, World Scientific Singapore (1995). (1995) Zbl0848.60001MR1412800
- Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. Th. Rel. Fields 111 (1998), 337-374. (1998) Zbl0918.60037MR1640795
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.