The Kurzweil-Henstock theory of stochastic integration

Tin-Lam Toh; Tuan-Seng Chew

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 829-848
  • ISSN: 0011-4642

Abstract

top
The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.

How to cite

top

Toh, Tin-Lam, and Chew, Tuan-Seng. "The Kurzweil-Henstock theory of stochastic integration." Czechoslovak Mathematical Journal 62.3 (2012): 829-848. <http://eudml.org/doc/246743>.

@article{Toh2012,
abstract = {The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.},
author = {Toh, Tin-Lam, Chew, Tuan-Seng},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic integral; Kurzweil-Henstock; convergence theorem; stochastic integral; Kurzweil-Henstock; convergence theorem},
language = {eng},
number = {3},
pages = {829-848},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Kurzweil-Henstock theory of stochastic integration},
url = {http://eudml.org/doc/246743},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Toh, Tin-Lam
AU - Chew, Tuan-Seng
TI - The Kurzweil-Henstock theory of stochastic integration
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 829
EP - 848
AB - The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.
LA - eng
KW - stochastic integral; Kurzweil-Henstock; convergence theorem; stochastic integral; Kurzweil-Henstock; convergence theorem
UR - http://eudml.org/doc/246743
ER -

References

top
  1. Chew, T. S., Lee, P. Y., Nonabsolute integration using Vitali covers, N. Z. J. Math. 23 (1994), 25-36. (1994) Zbl0832.26005MR1279123
  2. Chew, T. S., Toh, T. L., Tay, J. Y., 10.14321/realanalexch.27.2.0495, Real Anal. Exch. 27 (2002), 495-514. (2002) Zbl1067.60025MR1922665DOI10.14321/realanalexch.27.2.0495
  3. Chung, K. L., Williams, R. J., Introduction to Stochastic Integration, 2nd edition, Birkhäuser Boston (1990). (1990) MR1102676
  4. Henstock, R., 10.1112/jlms/s1-30.3.273, J. Lond. Math. Soc. 30 (1955), 273-286. (1955) Zbl0066.09204MR0072968DOI10.1112/jlms/s1-30.3.273
  5. Henstock, R., Lectures on the Theory of Integration, World Scientific Singapore (1988). (1988) Zbl0668.28001MR0963249
  6. Henstock, R., The General Theory of Integration, Clarendon Press Oxford (1991). (1991) Zbl0745.26006MR1134656
  7. Henstock, R., 10.2307/44153722, Real Anal. Exch. 16 (1991), 460-470. (1991) Zbl0727.28013MR1112038DOI10.2307/44153722
  8. Hitsuda, M., Formula for Brownian partial derivatives, Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15. (1979) 
  9. Lee, P. Y., Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press Cambridge (2000). (2000) MR1756319
  10. Lee, T. W., 10.1017/S144678870001692X, J. Aust. Math. Soc. 21 (1976), 64-71. (1976) Zbl0314.28009MR0435334DOI10.1017/S144678870001692X
  11. Marraffa, V., A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998, Matimyás Mat. 22 (1999), 73-84. (1999) MR1770168
  12. McShane, E. J., Stochastic Calculus and Stochastic Models, Academic Press New York (1974). (1974) Zbl0292.60090MR0443084
  13. Mouldowney, P., A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153, Longman Harlow (1987). (1987) 
  14. Nualart, D., The Malliavin Calculus and Related Topics, Springer New York (1995). (1995) Zbl0837.60050MR1344217
  15. Nualart, D., Pardoux, E., 10.1007/BF00353876, Probab. Theory Relat. Fields 78 (1988), 535-581. (1988) Zbl0629.60061MR0950346DOI10.1007/BF00353876
  16. Pardoux, E., Protter, P., 10.1007/BF00390274, Probab. Theory Relat. Fields 76 (1987), 15-49. (1987) Zbl0608.60058MR0899443DOI10.1007/BF00390274
  17. Pop-Stojanovic, Z. R., 10.1137/0122010, SIAM J. Appl. Math. 22 (1972), 87-92. (1972) Zbl0243.60035MR0322954DOI10.1137/0122010
  18. Protter, P., 10.1214/aop/1176995088, Ann. Probab. 7 (1979), 276-289. (1979) Zbl0404.60062MR0525054DOI10.1214/aop/1176995088
  19. Protter, P., Stochastic Integration and Differential Equations, Springer New York (1990). (1990) Zbl0694.60047MR1037262
  20. Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, 2nd edition, Springer Berlin (1994). (1994) MR1303781
  21. Skorohod, A. V., On a generalisation of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233. (1975) MR0391258
  22. Stratonovich, R. L., 10.1137/0304028, J. SIAM Control 4 (1966), 362-371. (1966) MR0196814DOI10.1137/0304028
  23. Toh, T. L., Chew, T. S., A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan, World Scientific Singapore (1999), 291-299. (1999) MR1819215
  24. Toh, T. L., Chew, T. S., 10.1016/S0022-247X(03)00059-3, J. Math. Anal. Appl. 280 (2003), 133-147. (2003) Zbl1022.60055MR1972197DOI10.1016/S0022-247X(03)00059-3
  25. Toh, T. L., Chew, T. S., The non-uniform Riemann approach to multiple Itô-Wiener integral, Real Anal. Exch. 29 (2003-2004), 275-290. (2003) MR2061311
  26. Toh, T. L., Chew, T. S., On the Henstock-Fubini Theorem for multiple stochastic integral, Real Anal. Exch. 30 (2004-2005), 295-310. (2004) MR2127534
  27. Toh, T. L., Chew, T. S., 10.1016/j.mcm.2004.03.008, J. Math. Comput. Modeling 42 (2005), 139-149. (2005) MR2162393DOI10.1016/j.mcm.2004.03.008
  28. Toh, T. L., Chew, T. S., 10.1007/s10587-005-0052-7, Czech. Math. J. 55 (2005), 653-663. (2005) Zbl1081.26005MR2153089DOI10.1007/s10587-005-0052-7
  29. Toh, T. L., Chew, T. S., On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes, Math. Bohem. 130 (2005), 63-73. (2005) Zbl1112.26012MR2128359
  30. Toh, T. L., Chew, T. S., Henstock's version of Itô's formula, Real Anal. Exch. 35 (2009-2010), 375-3901-20. (2009) MR2683604
  31. Weizsäcker, H., G., G. Winkler, Stochastic Integrals: An introduction, Friedr. Vieweg & Sohn (1990). (1990) Zbl0718.60049MR1062600
  32. Wong, E., Zakai, M., 10.1214/aop/1176995718, Ann. Probab. 5 (1977), 770-778. (1977) Zbl0376.60060MR0448555DOI10.1214/aop/1176995718
  33. Xu, J. G., Lee, P. Y., Stochastic integrals of Itô and Henstock, Real Anal. Exch. 18 (1992-1993), 352-366. (1992) MR1228401
  34. Yeh, H., Martingales and Stochastic Analysis, World Scientific Singapore (1995). (1995) Zbl0848.60001MR1412800
  35. Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. Th. Rel. Fields 111 (1998), 337-374. (1998) Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.