On Itô-Kurzweil-Henstock integral and integration-by-part formula

Tin-Lam Toh; Tuan-Seng Chew

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 653-663
  • ISSN: 0011-4642

Abstract

top
In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.

How to cite

top

Toh, Tin-Lam, and Chew, Tuan-Seng. "On Itô-Kurzweil-Henstock integral and integration-by-part formula." Czechoslovak Mathematical Journal 55.3 (2005): 653-663. <http://eudml.org/doc/30975>.

@article{Toh2005,
abstract = {In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.},
author = {Toh, Tin-Lam, Chew, Tuan-Seng},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Riemann approach; stochastic integral; integration-by-parts; generalized Riemann approach; stochastic integral; integration-by-parts},
language = {eng},
number = {3},
pages = {653-663},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Itô-Kurzweil-Henstock integral and integration-by-part formula},
url = {http://eudml.org/doc/30975},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Toh, Tin-Lam
AU - Chew, Tuan-Seng
TI - On Itô-Kurzweil-Henstock integral and integration-by-part formula
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 653
EP - 663
AB - In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.
LA - eng
KW - generalized Riemann approach; stochastic integral; integration-by-parts; generalized Riemann approach; stochastic integral; integration-by-parts
UR - http://eudml.org/doc/30975
ER -

References

top
  1. The non-uniform Riemann approach to Itô’s integral, Real Anal. Exchange 27 (2001/2002), 495–514. (2001/2002) MR1922665
  2. 10.1112/jlms/s1-30.3.273, J.  London Math. Soc. 30 (1955), 273–286. (1955) Zbl0066.09204MR0072968DOI10.1112/jlms/s1-30.3.273
  3. Lectures on the Theory of Integration, World Scientific, Singapore, 1988. (1988) Zbl0668.28001MR0963249
  4. The General Theory of Integration, Oxford Science, , 1991. (1991) Zbl0745.26006MR1134656
  5. Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7 (1957), 418–446. (1957) Zbl0090.30002MR0111875
  6. Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974. (1974) Zbl0292.60090MR0443084
  7. 10.1137/0122010, SIAM J.  Appl. Math. 22 (1972), 89–92. (1972) MR0322954DOI10.1137/0122010
  8. 10.1214/aop/1176995088, Ann. Probability 7 (1979), 276–289. (1979) Zbl0404.60062MR0525054DOI10.1214/aop/1176995088
  9. Stochastic Integration and Differential Equations, Springer, New York, 1990. (1990) Zbl0694.60047MR1037262
  10. A variational approach to Itô’s integral, Proceedings of  SAP’s  98, Taiwan P291-299, World Scientifc, Singapore, 1999. (1999) MR1819215
  11. 10.1016/S0022-247X(03)00059-3, J.  Math. Anal. Appl. 280 (2003), 133–147. (2003) MR1972197DOI10.1016/S0022-247X(03)00059-3
  12. The Riemann approach to stochastic integration, PhD. Thesis, National University of Singapore, Singapore, 2001. (2001) 
  13. Stochastic integrals of Itô and Henstock, Real Anal. Exchange 18 (1992/3), 352–366. (1992/3) MR1228401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.