On Itô-Kurzweil-Henstock integral and integration-by-part formula
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 653-663
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topToh, Tin-Lam, and Chew, Tuan-Seng. "On Itô-Kurzweil-Henstock integral and integration-by-part formula." Czechoslovak Mathematical Journal 55.3 (2005): 653-663. <http://eudml.org/doc/30975>.
@article{Toh2005,
abstract = {In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.},
author = {Toh, Tin-Lam, Chew, Tuan-Seng},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Riemann approach; stochastic integral; integration-by-parts; generalized Riemann approach; stochastic integral; integration-by-parts},
language = {eng},
number = {3},
pages = {653-663},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Itô-Kurzweil-Henstock integral and integration-by-part formula},
url = {http://eudml.org/doc/30975},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Toh, Tin-Lam
AU - Chew, Tuan-Seng
TI - On Itô-Kurzweil-Henstock integral and integration-by-part formula
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 653
EP - 663
AB - In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.
LA - eng
KW - generalized Riemann approach; stochastic integral; integration-by-parts; generalized Riemann approach; stochastic integral; integration-by-parts
UR - http://eudml.org/doc/30975
ER -
References
top- The non-uniform Riemann approach to Itô’s integral, Real Anal. Exchange 27 (2001/2002), 495–514. (2001/2002) MR1922665
- 10.1112/jlms/s1-30.3.273, J. London Math. Soc. 30 (1955), 273–286. (1955) Zbl0066.09204MR0072968DOI10.1112/jlms/s1-30.3.273
- Lectures on the Theory of Integration, World Scientific, Singapore, 1988. (1988) Zbl0668.28001MR0963249
- The General Theory of Integration, Oxford Science, , 1991. (1991) Zbl0745.26006MR1134656
- Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7 (1957), 418–446. (1957) Zbl0090.30002MR0111875
- Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974. (1974) Zbl0292.60090MR0443084
- 10.1137/0122010, SIAM J. Appl. Math. 22 (1972), 89–92. (1972) MR0322954DOI10.1137/0122010
- 10.1214/aop/1176995088, Ann. Probability 7 (1979), 276–289. (1979) Zbl0404.60062MR0525054DOI10.1214/aop/1176995088
- Stochastic Integration and Differential Equations, Springer, New York, 1990. (1990) Zbl0694.60047MR1037262
- A variational approach to Itô’s integral, Proceedings of SAP’s 98, Taiwan P291-299, World Scientifc, Singapore, 1999. (1999) MR1819215
- 10.1016/S0022-247X(03)00059-3, J. Math. Anal. Appl. 280 (2003), 133–147. (2003) MR1972197DOI10.1016/S0022-247X(03)00059-3
- The Riemann approach to stochastic integration, PhD. Thesis, National University of Singapore, Singapore, 2001. (2001)
- Stochastic integrals of Itô and Henstock, Real Anal. Exchange 18 (1992/3), 352–366. (1992/3) MR1228401
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.