Second moments of Dirichlet -functions weighted by Kloosterman sums
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 655-661
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Tingting. "Second moments of Dirichlet $L$-functions weighted by Kloosterman sums." Czechoslovak Mathematical Journal 62.3 (2012): 655-661. <http://eudml.org/doc/246771>.
@article{Wang2012,
abstract = {For the general modulo $q\ge 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.},
author = {Wang, Tingting},
journal = {Czechoslovak Mathematical Journal},
keywords = {general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula; general -th Kloosterman sum; Dirichlet -function; mean square value; asymptotic formula},
language = {eng},
number = {3},
pages = {655-661},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second moments of Dirichlet $L$-functions weighted by Kloosterman sums},
url = {http://eudml.org/doc/246771},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Wang, Tingting
TI - Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 655
EP - 661
AB - For the general modulo $q\ge 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.
LA - eng
KW - general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula; general -th Kloosterman sum; Dirichlet -function; mean square value; asymptotic formula
UR - http://eudml.org/doc/246771
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Springer, New York (1976). (1976) Zbl0335.10001MR0434929
- Chowla, S., On Kloosterman's sum, Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. (1967) Zbl0157.09001MR0228452
- Cochrane, T., Pinner, C., 10.4064/aa116-1-4, Acta Arith. 116 (2005), 35-41. (2005) Zbl1082.11050MR2114903DOI10.4064/aa116-1-4
- Cochrane, T., Zheng, Z., 10.4064/aa-95-1-67-95, Acta Arith. 95 (2000), 67-95. (2000) Zbl0956.11018MR1787206DOI10.4064/aa-95-1-67-95
- Cochrane, T., Pinner, C., 10.1016/j.jnt.2005.04.001, J. Number Theory 116 (2006), 270-292. (2006) Zbl1093.11058MR2195926DOI10.1016/j.jnt.2005.04.001
- Deshouillers, J.-M., Iwaniec, H., 10.1007/BF01390728, Invent. Math. 70 (1982), 219-288. (1982) Zbl0502.10021MR0684172DOI10.1007/BF01390728
- Estermann, T., 10.1112/S0025579300002187, Mathematika, Lond. 8 (1961), 83-86. (1961) Zbl0114.26302MR0126420DOI10.1112/S0025579300002187
- Iwaniec, H., Kowalski, E., Analytic Number Theory, Colloquium Publicastions. American Mathematical Society 53. Providence, RI: American Mathematical Society (2004). (2004) Zbl1059.11001MR2061214
- Malyshev, A. V., A generalization of Kloosterman sums and their estimates, Russian Vestnik Leningrad Univ. 15 (1960), 59-75. (1960) MR0125084
- Weil, A., 10.1073/pnas.34.5.204, Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. (1948) Zbl0032.26102MR0027006DOI10.1073/pnas.34.5.204
- Zhang, W., Yi, Y., He, X., 10.1006/jnth.2000.2515, J. Number Theory 84 (2000), 199-213. (2000) Zbl0958.11061MR1795790DOI10.1006/jnth.2000.2515
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.