Nonmonotone nonconvolution functions of positive type and applications

Tomáš Bárta

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 2, page 211-220
  • ISSN: 0010-2628

Abstract

top
We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials.

How to cite

top

Bárta, Tomáš. "Nonmonotone nonconvolution functions of positive type and applications." Commentationes Mathematicae Universitatis Carolinae 53.2 (2012): 211-220. <http://eudml.org/doc/246789>.

@article{Bárta2012,
abstract = {We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials.},
author = {Bárta, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {functions of positive type; nonconvolution integral equation; chemically reacting viscoelastic fluid; functions of positive type; nonconvolution integral equation; chemically reacting viscoelastic fluid},
language = {eng},
number = {2},
pages = {211-220},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonmonotone nonconvolution functions of positive type and applications},
url = {http://eudml.org/doc/246789},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Bárta, Tomáš
TI - Nonmonotone nonconvolution functions of positive type and applications
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 2
SP - 211
EP - 220
AB - We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials.
LA - eng
KW - functions of positive type; nonconvolution integral equation; chemically reacting viscoelastic fluid; functions of positive type; nonconvolution integral equation; chemically reacting viscoelastic fluid
UR - http://eudml.org/doc/246789
ER -

References

top
  1. Bárta T., Global existence for a nonlinear model of 1D chemically reacting viscoelastic body, preprint, 2012. 
  2. Bulíček M., Málek J., Rajagopal K.R., Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, (English summary) Partial differential equations and fluid mechanics, 2653, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge, 2009. Zbl1182.35184MR2605756
  3. Cannarsa P., Sforza D., 10.1016/j.jde.2011.03.005, J. Differential Equations 250 (2011), no. 12, 4289–4335. Zbl1218.45010MR2793256DOI10.1016/j.jde.2011.03.005
  4. Gripenberg G., Londen S.O., Staffans O., Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990. Zbl1159.45001MR1050319
  5. Halanay A., 10.1016/0022-247X(65)90126-5, J. Math. Anal. Appl 10 (1965), 319–324. Zbl0136.10202MR0176304DOI10.1016/0022-247X(65)90126-5
  6. Kiffe T., 10.1016/0022-0396(76)90033-4, J. Differential Equations 22 (1976), no. 2, 349–367. Zbl0298.45003MR0417721DOI10.1016/0022-0396(76)90033-4
  7. Mustapha K., McLean W., 10.1090/S0025-5718-09-02234-0, Math. Comp. 78 (2009), no. 268, 1975–1995. Zbl1198.65195MR2521275DOI10.1090/S0025-5718-09-02234-0
  8. Prüss J., Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser, Basel, 1993. MR1238939
  9. Rajagopal K.R., Wineman A.S., 10.1016/j.ijnonlinmec.2003.09.001, International Journal of Non-Linear Mechanics 39 (2004), 1547–1554. DOI10.1016/j.ijnonlinmec.2003.09.001
  10. Rajagopal K.R., Wineman A.S., 10.1007/s00707-009-0262-4, Acta Mechanica 213 (2010), no. 3–4, 255–266. DOI10.1007/s00707-009-0262-4
  11. Renardy M., Hrusa W.J., Nohel J.A., Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. Zbl0719.73013MR0919738
  12. Tatar N.-E., Long time behavior for a viscoelastic problem with a positive definite kernel, Aust. J. Math. Anal. Appl. 1 (2004), no. 1, Art. 5, 11 pp. Zbl1129.74314MR2077662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.