Characterization of moment multisequences by a variation of positive definiteness.
From the fact that the two-dimensional moment problem is not always solvable, we can deduce that there must be extreme ray generators of the cone of positive definite double sequences which are nor moment sequences. Such an argument does not lead to specific examples. In this paper it is shown how specific examples can be constructed if one is given an example of an N-extremal indeterminate measure in the one-dimensional moment problem (such examples exist in the literature). Konrad Schmüdgen had...
We analyze some aspects of Mercer's theory when the integral operators act on L²(X,σ), where X is a first countable topological space and σ is a non-degenerate measure. We obtain results akin to the well-known Mercer's theorem and, under a positive definiteness assumption on the generating kernel of the operator, we also deduce series representations for the kernel, traceability of the operator and an integration formula to compute the trace. In this way, we upgrade considerably similar results...
A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.
We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials.
2000 Mathematics Subject Classification: Primary: 42A05. Secondary: 42A82, 11N05.The prime number theorem with error term presents itself as &pi'(x) = ∫2x [dt/ logt] + O ( x e- K logL x). In 1909, Edmund Landau provided a systematic analysis of the proof seeking better values of L and K. At a key point of his 1899 proof de la Vallée Poussin made use of the nonnegative trigonometric polynomial 2/3 (1+cos x)2 = 1+4/3 cosx +1/3 cos2x. Landau considered more general positive definite nonnegative...
In this partly expository paper we study van der Corput sets in , with a focus on connections with harmonic analysis and recurrence properties of measure preserving dynamical systems. We prove multidimensional versions of some classical results obtained for d = 1 by Kamae and M. Mendès France and by Ruzsa, establish new characterizations, introduce and discuss some modifications of van der Corput sets which correspond to various notions of recurrence, provide numerous examples and formulate some...
A subset E of a discrete abelian group is a "Fatou-Zygmund interpolation set" (FZI₀ set) if every bounded Hermitian function on E is the restriction of the Fourier-Stieltjes transform of a discrete, non-negative measure. We show that every infinite subset of a discrete abelian group contains an FZI₀ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are FZI₀ (with that stronger interpolation property). ...