On the extremal behavior of a Pareto process: an alternative for ARMAX modeling

Marta Ferreira

Kybernetika (2012)

  • Volume: 48, Issue: 1, page 31-49
  • ISSN: 0023-5954

Abstract

top
In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.

How to cite

top

Ferreira, Marta. "On the extremal behavior of a Pareto process: an alternative for ARMAX modeling." Kybernetika 48.1 (2012): 31-49. <http://eudml.org/doc/246793>.

@article{Ferreira2012,
abstract = {In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.},
author = {Ferreira, Marta},
journal = {Kybernetika},
keywords = {extreme value theory; Markov chains; autoregressive processes; tail dependence; Markov chains; tail dependence; extreme value theory; autoregressive processes},
language = {eng},
number = {1},
pages = {31-49},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the extremal behavior of a Pareto process: an alternative for ARMAX modeling},
url = {http://eudml.org/doc/246793},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Ferreira, Marta
TI - On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 1
SP - 31
EP - 49
AB - In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.
LA - eng
KW - extreme value theory; Markov chains; autoregressive processes; tail dependence; Markov chains; tail dependence; extreme value theory; autoregressive processes
UR - http://eudml.org/doc/246793
ER -

References

top
  1. M. T. Alpuim, 10.2307/3214030, J. Appl. Probab. 26 (1989), 219-232. (1989) Zbl0677.60026MR1000283DOI10.2307/3214030
  2. B. C. Arnold, Pareto Distributions., International Cooperative Publishing House, Fairland 1983. (1983) MR0751409
  3. B. C. Arnold, Pareto processes., In: Handbook of Statistics (D. N. Shanbhag and C. R. Rao, eds.), Elsevier Science B.V. 2001, Vol. 19. (2001) Zbl0981.60036MR1861718
  4. S. Asmussen, Applied Probability and Queues., John Wiley & Sons, Chichester 1987. (1987) Zbl0624.60098MR0889893
  5. L. Canto e Castro, Sobre a Teoria Assintótica de Extremos., Ph.D. Thesis, FCUL 1992. (1992) 
  6. M. R. Chernick, 10.1214/aop/1176994514, Ann. Probab. 9 (1981), 145-149. (1981) MR0606803DOI10.1214/aop/1176994514
  7. M. R. Chernick, T. Hsing, W. P. McCormick, 10.2307/1427679, Adv. Probab. 23 (1991), 835-850. (1991) Zbl0741.60042MR1133731DOI10.2307/1427679
  8. R. Davis, S. Resnick, 10.2307/1427767, Adv. Appl. Probab. 21 (1989), 781-803. (1989) Zbl0716.62098MR1039628DOI10.2307/1427767
  9. D. J. Daley, J. Haslett, 10.2307/1426520, Adv. Appl. Probab. 14 (1982), 257-271. (1982) Zbl0479.60097MR0650122DOI10.2307/1426520
  10. A. L. M. Dekkers, J. H. J. Einmahl, L. de Haan, 10.1214/aos/1176347397, Ann. Statist. 17 (1989), 1833-1855. (1989) Zbl0701.62029MR1026315DOI10.1214/aos/1176347397
  11. H. Drees, 10.3150/bj/1066223272, Bernoulli 9 (2003), 617-657. (2003) Zbl1040.62077MR1996273DOI10.3150/bj/1066223272
  12. H. Ferreira, 10.1239/jap/1165505198, J. Appl. Probab. 43(4) (2006), 927-937. (2006) Zbl1137.60024MR2274627DOI10.1239/jap/1165505198
  13. M. Ferreira, L. Canto e Castro, 10.1016/j.jspi.2010.05.024, J. Statist. Plann. Inference 140 (2010), 11, 3552-3566. (2010) MR2659877DOI10.1016/j.jspi.2010.05.024
  14. M. Ferreira, H. Ferreira, On extremal dependence: some contributions., (In press). 
  15. I. S. Helland, T. S. Nilsen, 10.2307/3212533, J. Appl. Probab. 13 (1976), 781-790. (1976) Zbl0349.60066MR0431437DOI10.2307/3212533
  16. B. M. Hill, 10.1214/aos/1176343247, Ann. Statist. 3 (1975), 1163-1174. (1975) Zbl0323.62033MR0378204DOI10.1214/aos/1176343247
  17. J. R. M. Hosking, J. R. Wallis, 10.1080/00401706.1987.10488243, Technometrics 29 (1987), 339-349. (1987) Zbl0628.62019MR0906643DOI10.1080/00401706.1987.10488243
  18. T. Hsing, J. Hüsler, M. R. Leadbetter, 10.1007/BF00718038, Probab. Theory Related Fields 78 (1988), 97-112. (1988) Zbl0619.60054MR0940870DOI10.1007/BF00718038
  19. J. Klotz, 10.1214/aos/1176342377, Ann. Statist. 1 (1973), 373-379. (1973) Zbl0256.62029MR0381103DOI10.1214/aos/1176342377
  20. M. R. Leadbetter, 10.1007/BF00532947, Z. Wahrsch. verw. Gebiete 28 (1974), 289-303. (1974) Zbl0265.60019MR0362465DOI10.1007/BF00532947
  21. M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes., Springer-Verlag, New York 1983. (1983) Zbl0518.60021MR0691492
  22. M. R. Leadbetter, S. Nandagopalan, On exceedance point processes for stationary sequences under mild oscillation restrictions., In: Extreme Value Theory (J. Hüsler and R.-D. Reiss, eds.), Springer-Verlag 1989, pp. 69-80. (1989) Zbl0677.60040MR0992049
  23. A. V. Lebedev, Statistical analysis of first-order MARMA processes., Mat. Zametki 83 (2008), 4, 552-558. (2008) Zbl1152.62059MR2431621
  24. A. Ledford, J. A. Tawn, 10.1093/biomet/83.1.169, Biometrika 83 (1996), 169-187. (1996) Zbl0865.62040MR1399163DOI10.1093/biomet/83.1.169
  25. A. Ledford, J. A. Tawn, 10.1111/1467-9868.00080, J. Royal Statist. Soc. Ser. B 59 (1997), 475-499. (1997) Zbl0886.62063MR1440592DOI10.1111/1467-9868.00080
  26. V. Pareto, Cours d'economie Politique., F. Rouge, Lausanne Vol. II., 1897. (1897) 
  27. J. Pickands III, 10.1214/aos/1176343003, Ann. Statist. 3 (1975), 119-131. (1975) MR0423667DOI10.1214/aos/1176343003
  28. S. Resnick, C. Stǎricǎ, 10.2307/3214926, J. Appl. Probab. 32 (1995), 139-167. (1995) MR1316799DOI10.2307/3214926
  29. S. Resnick, C. Stǎricǎ, 10.1214/aoap/1028903376, Ann. Appl. Probab. 8 (1998), 4, 1156-1183. (1998) MR1661160DOI10.1214/aoap/1028903376
  30. H. Rootzén, M. R. Leadbetter, L. de Haan, Tail and Quantile Estimation for Strongly Mixing Stationary Sequences., Technical Report, UNC Center for Stochastic Processes, 1990. (1990) 
  31. R. L. Smith, 10.1214/aos/1176350499, Ann. Statist. 15 (1987), 1174-1207. (1987) Zbl0642.62022MR0902252DOI10.1214/aos/1176350499
  32. H. C. Yeh, B. C. Arnold, C. A. Robertson, 10.2307/3214437, J. Appl. Probab. 25 (1988), 291-301. (1988) Zbl0658.62101MR0938193DOI10.2307/3214437
  33. Z. Zhang, R. L. Smith, Modelling Financial Time Series Data as Moving Maxima Processes., Technical Report Dept. Stat. (Univ. North Carolina, Chapel Hill, NC, 2001); http://www.stat.unc.edu/faculty/rs/ papers/RLS_Papers.html. (2001) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.