On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
Kybernetika (2012)
- Volume: 48, Issue: 1, page 31-49
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFerreira, Marta. "On the extremal behavior of a Pareto process: an alternative for ARMAX modeling." Kybernetika 48.1 (2012): 31-49. <http://eudml.org/doc/246793>.
@article{Ferreira2012,
abstract = {In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.},
author = {Ferreira, Marta},
journal = {Kybernetika},
keywords = {extreme value theory; Markov chains; autoregressive processes; tail dependence; Markov chains; tail dependence; extreme value theory; autoregressive processes},
language = {eng},
number = {1},
pages = {31-49},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the extremal behavior of a Pareto process: an alternative for ARMAX modeling},
url = {http://eudml.org/doc/246793},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Ferreira, Marta
TI - On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 1
SP - 31
EP - 49
AB - In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.
LA - eng
KW - extreme value theory; Markov chains; autoregressive processes; tail dependence; Markov chains; tail dependence; extreme value theory; autoregressive processes
UR - http://eudml.org/doc/246793
ER -
References
top- M. T. Alpuim, 10.2307/3214030, J. Appl. Probab. 26 (1989), 219-232. (1989) Zbl0677.60026MR1000283DOI10.2307/3214030
- B. C. Arnold, Pareto Distributions., International Cooperative Publishing House, Fairland 1983. (1983) MR0751409
- B. C. Arnold, Pareto processes., In: Handbook of Statistics (D. N. Shanbhag and C. R. Rao, eds.), Elsevier Science B.V. 2001, Vol. 19. (2001) Zbl0981.60036MR1861718
- S. Asmussen, Applied Probability and Queues., John Wiley & Sons, Chichester 1987. (1987) Zbl0624.60098MR0889893
- L. Canto e Castro, Sobre a Teoria Assintótica de Extremos., Ph.D. Thesis, FCUL 1992. (1992)
- M. R. Chernick, 10.1214/aop/1176994514, Ann. Probab. 9 (1981), 145-149. (1981) MR0606803DOI10.1214/aop/1176994514
- M. R. Chernick, T. Hsing, W. P. McCormick, 10.2307/1427679, Adv. Probab. 23 (1991), 835-850. (1991) Zbl0741.60042MR1133731DOI10.2307/1427679
- R. Davis, S. Resnick, 10.2307/1427767, Adv. Appl. Probab. 21 (1989), 781-803. (1989) Zbl0716.62098MR1039628DOI10.2307/1427767
- D. J. Daley, J. Haslett, 10.2307/1426520, Adv. Appl. Probab. 14 (1982), 257-271. (1982) Zbl0479.60097MR0650122DOI10.2307/1426520
- A. L. M. Dekkers, J. H. J. Einmahl, L. de Haan, 10.1214/aos/1176347397, Ann. Statist. 17 (1989), 1833-1855. (1989) Zbl0701.62029MR1026315DOI10.1214/aos/1176347397
- H. Drees, 10.3150/bj/1066223272, Bernoulli 9 (2003), 617-657. (2003) Zbl1040.62077MR1996273DOI10.3150/bj/1066223272
- H. Ferreira, 10.1239/jap/1165505198, J. Appl. Probab. 43(4) (2006), 927-937. (2006) Zbl1137.60024MR2274627DOI10.1239/jap/1165505198
- M. Ferreira, L. Canto e Castro, 10.1016/j.jspi.2010.05.024, J. Statist. Plann. Inference 140 (2010), 11, 3552-3566. (2010) MR2659877DOI10.1016/j.jspi.2010.05.024
- M. Ferreira, H. Ferreira, On extremal dependence: some contributions., (In press).
- I. S. Helland, T. S. Nilsen, 10.2307/3212533, J. Appl. Probab. 13 (1976), 781-790. (1976) Zbl0349.60066MR0431437DOI10.2307/3212533
- B. M. Hill, 10.1214/aos/1176343247, Ann. Statist. 3 (1975), 1163-1174. (1975) Zbl0323.62033MR0378204DOI10.1214/aos/1176343247
- J. R. M. Hosking, J. R. Wallis, 10.1080/00401706.1987.10488243, Technometrics 29 (1987), 339-349. (1987) Zbl0628.62019MR0906643DOI10.1080/00401706.1987.10488243
- T. Hsing, J. Hüsler, M. R. Leadbetter, 10.1007/BF00718038, Probab. Theory Related Fields 78 (1988), 97-112. (1988) Zbl0619.60054MR0940870DOI10.1007/BF00718038
- J. Klotz, 10.1214/aos/1176342377, Ann. Statist. 1 (1973), 373-379. (1973) Zbl0256.62029MR0381103DOI10.1214/aos/1176342377
- M. R. Leadbetter, 10.1007/BF00532947, Z. Wahrsch. verw. Gebiete 28 (1974), 289-303. (1974) Zbl0265.60019MR0362465DOI10.1007/BF00532947
- M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes., Springer-Verlag, New York 1983. (1983) Zbl0518.60021MR0691492
- M. R. Leadbetter, S. Nandagopalan, On exceedance point processes for stationary sequences under mild oscillation restrictions., In: Extreme Value Theory (J. Hüsler and R.-D. Reiss, eds.), Springer-Verlag 1989, pp. 69-80. (1989) Zbl0677.60040MR0992049
- A. V. Lebedev, Statistical analysis of first-order MARMA processes., Mat. Zametki 83 (2008), 4, 552-558. (2008) Zbl1152.62059MR2431621
- A. Ledford, J. A. Tawn, 10.1093/biomet/83.1.169, Biometrika 83 (1996), 169-187. (1996) Zbl0865.62040MR1399163DOI10.1093/biomet/83.1.169
- A. Ledford, J. A. Tawn, 10.1111/1467-9868.00080, J. Royal Statist. Soc. Ser. B 59 (1997), 475-499. (1997) Zbl0886.62063MR1440592DOI10.1111/1467-9868.00080
- V. Pareto, Cours d'economie Politique., F. Rouge, Lausanne Vol. II., 1897. (1897)
- J. Pickands III, 10.1214/aos/1176343003, Ann. Statist. 3 (1975), 119-131. (1975) MR0423667DOI10.1214/aos/1176343003
- S. Resnick, C. Stǎricǎ, 10.2307/3214926, J. Appl. Probab. 32 (1995), 139-167. (1995) MR1316799DOI10.2307/3214926
- S. Resnick, C. Stǎricǎ, 10.1214/aoap/1028903376, Ann. Appl. Probab. 8 (1998), 4, 1156-1183. (1998) MR1661160DOI10.1214/aoap/1028903376
- H. Rootzén, M. R. Leadbetter, L. de Haan, Tail and Quantile Estimation for Strongly Mixing Stationary Sequences., Technical Report, UNC Center for Stochastic Processes, 1990. (1990)
- R. L. Smith, 10.1214/aos/1176350499, Ann. Statist. 15 (1987), 1174-1207. (1987) Zbl0642.62022MR0902252DOI10.1214/aos/1176350499
- H. C. Yeh, B. C. Arnold, C. A. Robertson, 10.2307/3214437, J. Appl. Probab. 25 (1988), 291-301. (1988) Zbl0658.62101MR0938193DOI10.2307/3214437
- Z. Zhang, R. L. Smith, Modelling Financial Time Series Data as Moving Maxima Processes., Technical Report Dept. Stat. (Univ. North Carolina, Chapel Hill, NC, 2001); http://www.stat.unc.edu/faculty/rs/ papers/RLS_Papers.html. (2001)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.