On the tail index estimation of an autoregressive Pareto process

Marta Ferreira

Discussiones Mathematicae Probability and Statistics (2013)

  • Volume: 33, Issue: 1-2, page 65-77
  • ISSN: 1509-9423

Abstract

top
In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.

How to cite

top

Marta Ferreira. "On the tail index estimation of an autoregressive Pareto process." Discussiones Mathematicae Probability and Statistics 33.1-2 (2013): 65-77. <http://eudml.org/doc/270855>.

@article{MartaFerreira2013,
abstract = {In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.},
author = {Marta Ferreira},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {extreme value theory; autoregressive processes; tail index estimation; autoregressive Pareto process; Gaussian process},
language = {eng},
number = {1-2},
pages = {65-77},
title = {On the tail index estimation of an autoregressive Pareto process},
url = {http://eudml.org/doc/270855},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Marta Ferreira
TI - On the tail index estimation of an autoregressive Pareto process
JO - Discussiones Mathematicae Probability and Statistics
PY - 2013
VL - 33
IS - 1-2
SP - 65
EP - 77
AB - In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.
LA - eng
KW - extreme value theory; autoregressive processes; tail index estimation; autoregressive Pareto process; Gaussian process
UR - http://eudml.org/doc/270855
ER -

References

top
  1. [1] B.C. Arnold, Pareto Distributions (International Cooperative Publishing House, Fairland, 1983). 
  2. [2] B.C. Arnold, Pareto processes, in: Handbook of Statistics, D.N. Shanbhag and C.R. Rao, eds., Vol. 19, (Elsevier Science B.V., 2001). 
  3. [3] R. Davis and S. Resnick, Basic properties and prediction of max-ARMA processes, Adv. Appl. Probab. 21 (1989) 781-803. doi: 10.1214/aos/1176347397. Zbl0716.62098
  4. [4] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme value distribution, Ann. Statist. 17 (1989) 1833-1855. doi: 10.1214/aos/1176347397. Zbl0701.62029
  5. [5] H. Drees, On smooth statistical tail functionals, Scand. J. Statist. 25 (1998a) 187-210. doi: 10.1111/1467-9469.00097. 
  6. [6] H. Drees, A general class of estimators of the extreme value index, J. Statist. Plann. Inference 66) 1998b (95-112. doi: 10.1016/S0378-3758(97)00076-1. Zbl0929.62034
  7. [7] H. Drees, Extreme quantile estimation for dependent data with applications to finance, Bernoulli 9 (2003) 617-657. doi: 0.3150/bj/1066223272. Zbl1040.62077
  8. [8] M. Ferreira, On the extremal behavior of a pareto process: an alternative for armax modeling, Kybernetika 48 (2012) 31-49. Zbl1263.62109
  9. [9] M. Ferreira, Tail dependence of a Pareto process, accepted for publication in Studies in Theoretical and Applied Statistics - Selected Papers of the Statistical Societies, Springer. 
  10. [10] H. Ferreira and M. Ferreira, Tail dependence between order statistics, J. Multivariate Anal. 105 (2012) 176-192. doi: 10.1016/j.jmva.2011.09.001. Zbl1234.60057
  11. [11] H. Ferreira and M. Ferreira, Fragility Index of block tailed vectors, J. Statist. Plann. Inference 142 (2012) 1837-1848. doi: 10.1016/j.jspi.2012.01.021. Zbl06036341
  12. [12] J.L. Geluk, L. De Haan and C.G. De Vries, Weak and strong financial fragility. Tinbergen Institute Discussion Paper, TI 2007-023/2, 2007. 
  13. [13] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975) 1163-1174. doi: 10.1214/aos/1176343247. Zbl0323.62033
  14. [14] J.R.M. Hosking and J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29 (1987) 339-349. doi: 10.1080/00401706.1987.10488243. Zbl0628.62019
  15. [15] T. Hsing, On tail estimation using dependent data, Ann. Statist. 19 (1991) 1574-1569. doi: 10.1214/aos/1176348261. Zbl0738.62026
  16. [16] H. Joe, Multivariate Models and Dependence Concepts (Chapman & Hall, London, 1997). doi: 10.1201/b13150. Zbl0990.62517
  17. [17] S.D. Krishnarani and K. Jayakumar, A class of autoregressive processes, Statist. Probab. Lett. 78 (2008) 1355-1361. doi: 10.1016/j.spl.2007.12.019. Zbl1152.62368
  18. [18] A.V. Lebedev, Statistical analysis of first-order MARMA processes, Mathematical Notes 83 (2008) 506-511. doi: 10.1134/S0001434608030243. Zbl1152.62059
  19. [19] J. Pickands III, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975) 119-131. doi: 10.1214/aos/1176343003. Zbl0312.62038
  20. [20] S. Resnick and C. Stărică, Consistency of Hill's estimator for dependent data, J. Appl. Probab. 32 (1995) 139-167. doi: 10.2307/3214926. Zbl0836.60020
  21. [21] S. Resnick and C. Stărică, Tail index estimation for dependent data, Ann. Appl. Probab. 8 (1998) 1156-1183. doi: 10.1214/aoap/1028903376 . Zbl0942.60037
  22. [22] H. Rootzén, M.R. Leadbetter and L. de Haan, Tail and Quantile Estimation for Strongly Mixing Stationary Sequences. Technical Report, UNC Center for Stochastic Processes, 1990. Zbl0939.60007
  23. [23] M. Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960) 195-210. doi: 10.1007/BF01682329. Zbl0095.33703
  24. [24] R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (1987) 1174-1207. doi: 10.1214/aos/1176350499. Zbl0642.62022
  25. [25] H.C. Yeh, B.C. Arnold and C.A. Robertson, Pareto processes, J. Appl. Probab. 25 (1988) 291-301. doi: 10.2307/3214437. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.