PHI-divergences, sufficiency, Bayes sufficiency, and deficiency
Kybernetika (2012)
- Volume: 48, Issue: 4, page 690-713
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiese, Friedrich. "$\phi $PHI-divergences, sufficiency, Bayes sufficiency, and deficiency." Kybernetika 48.4 (2012): 690-713. <http://eudml.org/doc/246799>.
@article{Liese2012,
abstract = {The paper studies the relations between $\phi $-divergences and fundamental concepts of decision theory such as sufficiency, Bayes sufficiency, and LeCam’s deficiency. A new and considerably simplified approach is given to the spectral representation of $\phi $-divergences already established in Österreicher and Feldman [28] under restrictive conditions and in Liese and Vajda [22], [23] in the general form. The simplification is achieved by a new integral representation of convex functions in terms of elementary convex functions which are strictly convex at one point only. Bayes sufficiency is characterized with the help of a binary model that consists of the joint distribution and the product of the marginal distributions of the observation and the parameter, respectively. LeCam’s deficiency is expressed in terms of $\phi $-divergences where $\phi $ belongs to a class of convex functions whose curvature measures are finite and satisfy a normalization condition.},
author = {Liese, Friedrich},
journal = {Kybernetika},
keywords = {divergences; sufficiency; Bayes sufficiency; deficiency; divergences; sufficiency; Bayes sufficiency; deficiency},
language = {eng},
number = {4},
pages = {690-713},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$\phi $PHI-divergences, sufficiency, Bayes sufficiency, and deficiency},
url = {http://eudml.org/doc/246799},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Liese, Friedrich
TI - $\phi $PHI-divergences, sufficiency, Bayes sufficiency, and deficiency
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 690
EP - 713
AB - The paper studies the relations between $\phi $-divergences and fundamental concepts of decision theory such as sufficiency, Bayes sufficiency, and LeCam’s deficiency. A new and considerably simplified approach is given to the spectral representation of $\phi $-divergences already established in Österreicher and Feldman [28] under restrictive conditions and in Liese and Vajda [22], [23] in the general form. The simplification is achieved by a new integral representation of convex functions in terms of elementary convex functions which are strictly convex at one point only. Bayes sufficiency is characterized with the help of a binary model that consists of the joint distribution and the product of the marginal distributions of the observation and the parameter, respectively. LeCam’s deficiency is expressed in terms of $\phi $-divergences where $\phi $ belongs to a class of convex functions whose curvature measures are finite and satisfy a normalization condition.
LA - eng
KW - divergences; sufficiency; Bayes sufficiency; deficiency; divergences; sufficiency; Bayes sufficiency; deficiency
UR - http://eudml.org/doc/246799
ER -
References
top- M. S. Ali, D. Silvey, A general class of coefficients of divergence of one distribution from another., J. Roy. Statist. Soc. Ser. B 28 (1966), 131-140. Zbl0203.19902MR0196777
- S. Arimoto, 10.1016/S0019-9958(71)90065-9, Inform. Control. 19 (1971), 181-194. Zbl0222.94022MR0309224DOI10.1016/S0019-9958(71)90065-9
- A. R. Barron, L. Györfi, E. C. van der Meulen, 10.1109/18.149496, IEEE Trans. Inform. Theory 38 (1990), 1437-1454. DOI10.1109/18.149496
- A. Berlinet, I. Vajda, E. C. van der Meulen, 10.1109/18.669143, IEEE Trans. Inform. Theory 44 (1990), 999-1009. Zbl0952.62029MR1616679DOI10.1109/18.669143
- A. Bhattacharyya, On some analogues to the amount of information and their uses in statistical estimation., Sankhya 8 (1946), 1-14. MR0020242
- H. Chernoff, 10.1214/aoms/1177729330, Ann. Math. Statist. 23 (1952), 493-507. MR0057518DOI10.1214/aoms/1177729330
- B. S. Clarke, A. R. Barron, 10.1109/18.54897, IEEE Trans. Inform. Theory 36 (1990), 453-471. Zbl0709.62008MR1053841DOI10.1109/18.54897
- I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffscher Ketten., Publ. Math. Inst. Hungar. Acad. Sci.8 (1963), 84-108. MR0164374
- I. Csiszár, Information-type measures of difference of probability distributions and indirect observations., Studia Sci. Math. Hungar. 2, (1967), 299-318. Zbl0157.25802MR0219345
- T. Cover, J. Thomas, Elements of Information Theory., Wiley, New York 1991. Zbl1140.94001MR1122806
- M. H. De Groot, Optimal Statistical Decisions., McGraw Hill, New York 1970. MR0356303
- D. Feldman, F. Österreicher, A note on -divergences., Studia Sci. Math. Hungar. 24 (1989), 191-200. Zbl0725.62005MR1051149
- A. Guntuboyina, 10.1109/TIT.2011.2110791, IEEE Trans. Inform. Theory 57 (2011), 2386-2399. MR2809097DOI10.1109/TIT.2011.2110791
- C. Guttenbrunner, On applications of the representation of -divergences as averaged minimal Bayesian risk., In: Trans. 11th Prague Conf. Inform. Theory, Statist. Dec. Funct., Random Processes A, 1992, pp. 449-456.
- L. Jager, J. A. Wellner, 10.1214/0009053607000000244, Ann. Statist. 35 (2007), 2018-2053. Zbl1126.62030MR2363962DOI10.1214/0009053607000000244
- T. Kailath, 10.1109/TCOM.1967.1089532, IEEE Trans. Commun. Technol. 15 (1990), 52-60. DOI10.1109/TCOM.1967.1089532
- S. Kakutani, 10.2307/1969123, Ann. Math. 49 (1948), 214-224. Zbl0030.02303MR0023331DOI10.2307/1969123
- S. Kullback, R. Leibler, 10.1214/aoms/1177729694, Ann. Math. Statist. 22 (1951), 79-86. Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
- L. LeCam, Locally asymptotically normal families of distributions., Univ. Calif. Publ. 3, (1960), 37-98. MR0126903
- L. LeCam, Asymptotic Methods in Statistical Decision Theory., Springer, Berlin 1986.
- F. Liese, I. Vajda, Convex Statistical Distances., Teubner, Leipzig 1987. Zbl0656.62004MR0926905
- F. Liese, I. Vajda, 10.1109/TIT.2006.881731, IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR2300826DOI10.1109/TIT.2006.881731
- F. Liese, I. Vajda, -divergences: Sufficiency, deficiency and testing of gypotheses., In: Advances in Inequalities from Probability Theory and Statistics. (N. S. Barnett and S. S. Dragomir, eds.), Nova Science Publisher, Inc., New York 2008, pp. 113-149. MR2459971
- F. Liese, K. J. Miescke, Statistical Decision Theory, Estimation, Testing and Selection., Springer, New York 2008. Zbl1154.62008MR2421720
- K. Matusita, 10.1214/aoms/1177728422, Ann. Math. Statist. 26 (1955), 613-640. Zbl0065.12101MR0073899DOI10.1214/aoms/1177728422
- D. Mussmann, Decision rules based on the distance, for problems of fit, two samples and estimation., Studia Sci. Math. Hungar. 14 (1979), 37-41.
- X. Nguyen, M. J. Wainwright, M. I. Jordan, 10.1214/08-AOS595, Ann. Statist. 37 (2009), 2018-2053. Zbl1162.62060MR2502654DOI10.1214/08-AOS595
- F. Österreicher, D. Feldman, 10.1007/BF01895132, Acta Math. Sci. Hungar. 37 (1981), 329-337. Zbl0477.60013MR0619882DOI10.1007/BF01895132
- F. Österreicher, I. Vajda, 10.1109/18.256536, IEEE Trans. Inform. Theory 39 (1993), 1036-1039. Zbl0792.62005MR1237725DOI10.1109/18.256536
- J. Pfanzagl, 10.1007/BF01893900, Metrika 21 (1974), 197-199. Zbl0289.62009MR0365797DOI10.1007/BF01893900
- H. V. Poor, Robust decision design using a distance criterion., IEEE Trans. Inform. Theory 26 (1980), 578-587. Zbl0445.62017MR0583942
- M. R. C. Read, N. A. C. Cressie, Goodness-of-Fit Statistics for Discrete Multivariate Data., Springer, Berlin 1988. Zbl0663.62065MR0955054
- A. Rényi, On measures of entropy and information., In: Proc. 4th Berkeley Symp. on Probab. Theory and Math. Statist. Berkeley Univ. Press, Berkeley 1961, pp. 547-561. Zbl0106.33001MR0132570
- A. W. Roberts, D. E. Varberg, Convex Functions., Academic Press, New York 1973. Zbl0289.26012MR0442824
- M. J. Schervish, Theory of Statistics., Springer, New York 1995. Zbl0834.62002MR1354146
- C. E. Shannon, 10.1002/j.1538-7305.1948.tb01338.x, Bell. Syst. Tech. J. 27 (1948), 379-423, 623-656. Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- H. Strasser, Mathematical Theory of Statistics., De Gruyter, Berlin 1985. Zbl0594.62017MR0812467
- F. Topsøe, Information-theoretical optimization techniques., Kybernetika 15 (1979), 7-17. MR0529888
- F. Topsøe, 10.1109/18.850703, IEEE Trans. Inform. Theory 46 (2000), 1602-1609. MR1768575DOI10.1109/18.850703
- E. Torgersen, Comparison of Statistical Experiments., Cambridge Univ. Press, Cambridge 1991. Zbl1158.62006MR1104437
- I. Vajda, 10.1007/BF02018663, Periodica Math. Hungar. 2 (1972), 223-234. Zbl0248.62001MR0335163DOI10.1007/BF02018663
- I. Vajda, Theory of Statistical Inference and Information., Kluwer Academic Publishers, Dordrecht - Boston - London 1989. Zbl0711.62002
- I. Vajda, On metric divergences of probability measures., Kybernetika 45 (2009), 885-900. MR2650071
- I. Vajda, 10.1109/TIT.2002.800497, IEEE Trans. Inform. Theory. 48 (1980) 2163-2172. Zbl1062.94533MR1930280DOI10.1109/TIT.2002.800497
- I. Vincze, On the concept and measure of information contained in an observation., In: Contribution to Probability. (J. Gani and V. F. Rohatgi, eds.) Academic Press, New York 1981, pp. 207-214. Zbl0531.62002MR0618690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.