Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces G 2 and G 2 / S O ( 4 )

László Verhóczki

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 1, page 101-109
  • ISSN: 0231-9721

Abstract

top
The exceptional compact symmetric spaces G 2 and G 2 / S O ( 4 ) admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.

How to cite

top

Verhóczki, László. "Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 101-109. <http://eudml.org/doc/246803>.

@article{Verhóczki2012,
abstract = {The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.},
author = {Verhóczki, László},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {harmonic unit vector field; minimal unit vector field; Lie group; Riemannian symmetric space; isometric action; Riemannian symmetric space; harmonic unit vector field; minimal unit vector field; isometric action},
language = {eng},
number = {1},
pages = {101-109},
publisher = {Palacký University Olomouc},
title = {Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$},
url = {http://eudml.org/doc/246803},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Verhóczki, László
TI - Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 101
EP - 109
AB - The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.
LA - eng
KW - harmonic unit vector field; minimal unit vector field; Lie group; Riemannian symmetric space; isometric action; Riemannian symmetric space; harmonic unit vector field; minimal unit vector field; isometric action
UR - http://eudml.org/doc/246803
ER -

References

top
  1. Berndt, J., Vanhecke, L., Verhóczki, L., Harmonic and minimal unit vector fields on Riemannian symmetric spaces, Illinois J. Math. 47 (2003), 1273–1286. (2003) Zbl1045.53036MR2037003
  2. Boeckx, E., Vanhecke, L., 10.1023/A:1010687231629, Acta Math. Hungar. 90 (2001), 317–331. (2001) Zbl1012.53040MR1910716DOI10.1023/A:1010687231629
  3. Boeckx, E., Vanhecke, L., Isoparametric functions and harmonic and minimal unit vector fields, In: Fernández, M., Wolf, J. A. (eds.) Global differential geometry: The mathematical legacy of Alfred Gray Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 20–31. (2001) Zbl1004.53046MR1870997
  4. Gil-Medrano, O., Llinares-Fuster, E., 10.2748/tmj/1113247180, Tôhoku Math. J. 54 (2002), 71–84. (2002) Zbl1006.53053MR1878928DOI10.2748/tmj/1113247180
  5. Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. (1978) Zbl0451.53038MR0514561
  6. Kollross, A., 10.1090/S0002-9947-01-02803-3, Trans. Amer. Math. Soc. 354 (2002), 571–612. (2002) Zbl1042.53034MR1862559DOI10.1090/S0002-9947-01-02803-3
  7. Leung, D. S. P., 10.1512/iumj.1975.24.24029, Indiana Univ. Math. J. 24 (1974), 327–339. (1974) Zbl0296.53039MR0367873DOI10.1512/iumj.1975.24.24029
  8. Postnikov, M., Lectures in Geometry. Semester V. Lie groups and Lie algebras, Mir Publishers, Moscow, 1986. (1986) MR0905471
  9. Verhóczki, L., 10.1007/s00605-002-0036-8, Monatsh. Math. 141 (2004), 323–335. (2004) Zbl1058.53041MR2053657DOI10.1007/s00605-002-0036-8
  10. Wiegmink, G., 10.1007/BF01460993, Math. Ann. 303 (1995), 325–344. (1995) Zbl0834.53034MR1348803DOI10.1007/BF01460993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.