Sum and difference sets containing integer powers

Quan-Hui Yang; Jian-Dong Wu

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 787-793
  • ISSN: 0011-4642

Abstract

top
Let n > m 2 be positive integers and n = ( m + 1 ) + r , where 0 r m . Let C be a subset of { 0 , 1 , , n } . We prove that if | C | > n / 2 + 1 if m is odd , m / 2 + δ if m is even , where x denotes the largest integer less than or equal to x and δ denotes the cardinality of even numbers in the interval [ 0 , min { r , m - 2 } ] , then C - C contains a power of m . We also show that these lower bounds are best possible.

How to cite

top

Yang, Quan-Hui, and Wu, Jian-Dong. "Sum and difference sets containing integer powers." Czechoslovak Mathematical Journal 62.3 (2012): 787-793. <http://eudml.org/doc/246808>.

@article{Yang2012,
abstract = {Let $n > m \ge 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \le r \le m.$ Let $C$ be a subset of $\lbrace 0,1,\cdots ,n\rbrace $. We prove that if \[ |C|>\{\left\lbrace \begin\{array\}\{ll\} \lfloor n/2 \rfloor +1 &\text\{if $m$ is odd\}, \\ m \ell /2 +\delta &\text\{if $m$ is even\},\\ \end\{array\}\right.\} \] where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \lbrace r,m-2\rbrace ]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.},
author = {Yang, Quan-Hui, Wu, Jian-Dong},
journal = {Czechoslovak Mathematical Journal},
keywords = {sum and difference set; integer power; sumset; difference set; integer power},
language = {eng},
number = {3},
pages = {787-793},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sum and difference sets containing integer powers},
url = {http://eudml.org/doc/246808},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Yang, Quan-Hui
AU - Wu, Jian-Dong
TI - Sum and difference sets containing integer powers
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 787
EP - 793
AB - Let $n > m \ge 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \le r \le m.$ Let $C$ be a subset of $\lbrace 0,1,\cdots ,n\rbrace $. We prove that if \[ |C|>{\left\lbrace \begin{array}{ll} \lfloor n/2 \rfloor +1 &\text{if $m$ is odd}, \\ m \ell /2 +\delta &\text{if $m$ is even},\\ \end{array}\right.} \] where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \lbrace r,m-2\rbrace ]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
LA - eng
KW - sum and difference set; integer power; sumset; difference set; integer power
UR - http://eudml.org/doc/246808
ER -

References

top
  1. Alon, N., 10.1016/0022-314X(87)90061-8, J. Number Theory 27 (1987), 196-205. (1987) Zbl0622.10042MR0909836DOI10.1016/0022-314X(87)90061-8
  2. Erdős, P., 10.1111/j.1749-6632.1989.tb16392.x, Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. (1989) MR1110810DOI10.1111/j.1749-6632.1989.tb16392.x
  3. Erdős, P., Freiman, G., 10.1016/0022-314X(90)90047-U, J. Number Theory 34 (1990), 1-12. (1990) MR1039762DOI10.1016/0022-314X(90)90047-U
  4. Freiman, G. A., Sumsets and powers of 2, Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. (1992) Zbl0796.11005MR1218196
  5. Kapoor, V., 10.1016/j.jnt.2009.09.018, J. Number Theory 130 (2010), 534-538. (2010) Zbl1217.11013MR2584837DOI10.1016/j.jnt.2009.09.018
  6. Lev, V. F., 10.1007/BF01261325, Combinatorica 16 (1996), 413-416. (1996) Zbl0862.11008MR1417350DOI10.1007/BF01261325
  7. Nathanson, M. B., Sárközy, A., 10.4064/aa-54-2-147-154, Acta Arith. 54 (1989), 147-154. (1989) Zbl0693.10040MR1024423DOI10.4064/aa-54-2-147-154
  8. Pan, H., 10.1016/j.jnt.2005.06.007, J. Number Theory 117 (2006), 216-221. (2006) Zbl1101.11045MR2204743DOI10.1016/j.jnt.2005.06.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.