Sum and difference sets containing integer powers

Quan-Hui Yang; Jian-Dong Wu

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 787-793
  • ISSN: 0011-4642

Abstract

top
Let n > m 2 be positive integers and n = ( m + 1 ) + r , where 0 r m . Let C be a subset of { 0 , 1 , , n } . We prove that if | C | > n / 2 + 1 if m is odd , m / 2 + δ if m is even , where x denotes the largest integer less than or equal to x and δ denotes the cardinality of even numbers in the interval [ 0 , min { r , m - 2 } ] , then C - C contains a power of m . We also show that these lower bounds are best possible.

How to cite

top

Yang, Quan-Hui, and Wu, Jian-Dong. "Sum and difference sets containing integer powers." Czechoslovak Mathematical Journal 62.3 (2012): 787-793. <http://eudml.org/doc/246808>.

@article{Yang2012,
abstract = {Let $n > m \ge 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \le r \le m.$ Let $C$ be a subset of $\lbrace 0,1,\cdots ,n\rbrace $. We prove that if \[ |C|>\{\left\lbrace \begin\{array\}\{ll\} \lfloor n/2 \rfloor +1 &\text\{if $m$ is odd\}, \\ m \ell /2 +\delta &\text\{if $m$ is even\},\\ \end\{array\}\right.\} \] where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \lbrace r,m-2\rbrace ]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.},
author = {Yang, Quan-Hui, Wu, Jian-Dong},
journal = {Czechoslovak Mathematical Journal},
keywords = {sum and difference set; integer power; sumset; difference set; integer power},
language = {eng},
number = {3},
pages = {787-793},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sum and difference sets containing integer powers},
url = {http://eudml.org/doc/246808},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Yang, Quan-Hui
AU - Wu, Jian-Dong
TI - Sum and difference sets containing integer powers
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 787
EP - 793
AB - Let $n > m \ge 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \le r \le m.$ Let $C$ be a subset of $\lbrace 0,1,\cdots ,n\rbrace $. We prove that if \[ |C|>{\left\lbrace \begin{array}{ll} \lfloor n/2 \rfloor +1 &\text{if $m$ is odd}, \\ m \ell /2 +\delta &\text{if $m$ is even},\\ \end{array}\right.} \] where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \lbrace r,m-2\rbrace ]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
LA - eng
KW - sum and difference set; integer power; sumset; difference set; integer power
UR - http://eudml.org/doc/246808
ER -

References

top
  1. Alon, N., 10.1016/0022-314X(87)90061-8, J. Number Theory 27 (1987), 196-205. (1987) Zbl0622.10042MR0909836DOI10.1016/0022-314X(87)90061-8
  2. Erdős, P., 10.1111/j.1749-6632.1989.tb16392.x, Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. (1989) MR1110810DOI10.1111/j.1749-6632.1989.tb16392.x
  3. Erdős, P., Freiman, G., 10.1016/0022-314X(90)90047-U, J. Number Theory 34 (1990), 1-12. (1990) MR1039762DOI10.1016/0022-314X(90)90047-U
  4. Freiman, G. A., Sumsets and powers of 2, Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. (1992) Zbl0796.11005MR1218196
  5. Kapoor, V., 10.1016/j.jnt.2009.09.018, J. Number Theory 130 (2010), 534-538. (2010) Zbl1217.11013MR2584837DOI10.1016/j.jnt.2009.09.018
  6. Lev, V. F., 10.1007/BF01261325, Combinatorica 16 (1996), 413-416. (1996) Zbl0862.11008MR1417350DOI10.1007/BF01261325
  7. Nathanson, M. B., Sárközy, A., 10.4064/aa-54-2-147-154, Acta Arith. 54 (1989), 147-154. (1989) Zbl0693.10040MR1024423DOI10.4064/aa-54-2-147-154
  8. Pan, H., 10.1016/j.jnt.2005.06.007, J. Number Theory 117 (2006), 216-221. (2006) Zbl1101.11045MR2204743DOI10.1016/j.jnt.2005.06.007

NotesEmbed ?

top

You must be logged in to post comments.