Displaying similar documents to “Sum and difference sets containing integer powers”

The tangent function and power residues modulo primes

Zhi-Wei Sun (2023)

Czechoslovak Mathematical Journal

Similarity:

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

On Ozeki’s inequality for power sums

Horst Alzer (2000)

Czechoslovak Mathematical Journal

Similarity:

Let p ( 0 , 1 ) be a real number and let n 2 be an even integer. We determine the largest value c n ( p ) such that the inequality i = 1 n | a i | p c n ( p ) holds for all real numbers a 1 , ... , a n which are pairwise distinct and satisfy min i j | a i - a j | = 1 . Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the optimal value c n ( p ) in the case p > 0 and n odd, and in the case p 1 and n even.

Finite canonization

Saharon Shelah (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The canonization theorem says that for given m , n for some m * (the first one is called E R ( n ; m ) ) we have for every function f with domain [ 1 , , m * ] n , for some A [ 1 , , m * ] m , the question of when the equality f ( i 1 , , i n ) = f ( j 1 , , j n ) (where i 1 < < i n and j 1 < j n are from A ) holds has the simplest answer: for some v { 1 , , n } the equality holds iff v i = j . We improve the bound on E R ( n , m ) so that fixing n the number of exponentiation needed to calculate E R ( n , m ) is best possible.

The postage stamp problem and arithmetic in base r

Amitabha Tripathi (2008)

Czechoslovak Mathematical Journal

Similarity:

Let h , k be fixed positive integers, and let A be any set of positive integers. Let h A : = { a 1 + a 2 + + a r : a i A , r h } denote the set of all integers representable as a sum of no more than h elements of A , and let n ( h , A ) denote the largest integer n such that { 1 , 2 , ... , n } h A . Let n ( h , k ) : = max A : n ( h , A ) , where the maximum is taken over all sets A with k elements. We determine n ( h , A ) when the elements of A are in geometric progression. In particular, this results in the evaluation of n ( h , 2 ) and yields surprisingly sharp lower bounds for n ( h , k ) , particularly for k = 3 .